Abstract

We experimentally demonstrate the novel phenomena of photoluminescence (PL) and fluorescence resonance energy transfer (FRET) assisted three-color PL separating in DNA optical nanofibers consisting of the stretched and connected DNA-cetyltrimethyl ammonium wires. The PL experiments are performed to comparatively trace photon transmission between single dye-doped DNA-CTMA optical nanofiber and PMMA optical nanofiber. A cascade FRET including DNA minor groove binder and DNA intercalators is used to further trace photon transmission inside DNA-CTMA wire. These experimental results will help to intrigue the new applications of DNA-CTMA as molecular waveguide in optobioelectronics area.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007).
    [CrossRef] [PubMed]
  2. A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
    [CrossRef] [PubMed]
  3. W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
    [CrossRef] [PubMed]
  4. M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
    [CrossRef] [PubMed]
  5. J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
    [CrossRef] [PubMed]
  6. K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
    [CrossRef] [PubMed]
  7. W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
    [CrossRef] [PubMed]
  8. W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
    [CrossRef] [PubMed]
  9. A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
    [CrossRef]
  10. D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
    [CrossRef]
  11. H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
    [CrossRef] [PubMed]
  12. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  13. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  14. W. Long, W. Zou, X. Li, J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012).
    [CrossRef] [PubMed]
  15. J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
    [CrossRef]
  16. A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
    [CrossRef] [PubMed]
  17. S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011).
    [CrossRef]
  18. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
    [CrossRef] [PubMed]
  19. J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007).
    [CrossRef] [PubMed]
  20. C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
    [CrossRef]
  21. J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
    [CrossRef] [PubMed]
  22. A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
    [CrossRef]
  23. S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999).
    [CrossRef] [PubMed]
  24. T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
    [CrossRef]
  25. S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
    [CrossRef] [PubMed]
  26. S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
    [PubMed]
  27. Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
    [CrossRef] [PubMed]
  28. D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
    [CrossRef] [PubMed]
  29. K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
    [CrossRef] [PubMed]
  30. M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
    [CrossRef]
  31. P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
    [CrossRef] [PubMed]
  32. N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
    [CrossRef]
  33. F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004).
    [CrossRef] [PubMed]
  34. G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
    [CrossRef] [PubMed]
  35. Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
    [CrossRef]
  36. Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
    [CrossRef] [PubMed]
  37. G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
    [CrossRef] [PubMed]
  38. K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
    [CrossRef]
  39. Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
    [CrossRef]
  40. Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
    [CrossRef]
  41. F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
    [CrossRef] [PubMed]

2013

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
[CrossRef] [PubMed]

2012

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
[CrossRef]

A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
[CrossRef] [PubMed]

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

W. Long, W. Zou, X. Li, J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

2011

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011).
[CrossRef]

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
[CrossRef] [PubMed]

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
[CrossRef] [PubMed]

2010

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

2009

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

2008

J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
[CrossRef] [PubMed]

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

2007

J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007).
[CrossRef] [PubMed]

J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007).
[CrossRef] [PubMed]

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

2006

S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
[PubMed]

2004

F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004).
[CrossRef] [PubMed]

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

2003

C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

2000

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

1999

S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999).
[CrossRef] [PubMed]

1997

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

1993

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

1977

G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
[CrossRef] [PubMed]

K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Albinsson, B.

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
[CrossRef] [PubMed]

Alidzhanov, E. K.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Ancona, M.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Anton, C. M.

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Aono, M.

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

Arkin, M. R.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Aroonjaeng, W.

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bagshaw, C. R.

W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
[CrossRef] [PubMed]

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

Barker, D.

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

Barton, J. K.

S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999).
[CrossRef] [PubMed]

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Bath, J.

J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007).
[CrossRef] [PubMed]

Berashevich, J. A.

J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007).
[CrossRef] [PubMed]

Bhatia, C. S.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Bhatnagar, P. K.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Blanco-Canosa, J. B.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Boeneman, K.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Bonnard, V.

W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
[CrossRef] [PubMed]

Bossmann, S. H.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Brown, T.

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

Burley, G. A.

W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
[CrossRef] [PubMed]

W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
[CrossRef] [PubMed]

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

Chakraborty, T.

J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007).
[CrossRef] [PubMed]

Chambron, J.

G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
[CrossRef] [PubMed]

Chen, I.

T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
[CrossRef]

Chen, J.

Choi, D.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Dawson, P. E.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Duportail, G.

G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
[CrossRef] [PubMed]

Endo, M.

A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
[CrossRef] [PubMed]

Esteso, V.

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

Falnes, J.

K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Finch, A. S.

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Galisteo-López, J. F.

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

Gao, H.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

Garcia Parajo, M.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gerrard, S. R.

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

Ghatlia, N. D.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Greenfield, S. R.

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Grote, J.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Grote, J. G.

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

Guan, Y.

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

Hall, E. A. H.

F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004).
[CrossRef] [PubMed]

Han, D.

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

Hannestad, J. K.

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
[CrossRef] [PubMed]

Hartmann, U.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Heeger, A. J.

C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
[CrossRef]

Heilemann, M.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Ho, F. M.

F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004).
[CrossRef] [PubMed]

Holden, S. J.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Horinouchi, S.

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

Hu, J.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

Hung, Y.

T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
[CrossRef]

Huston, A.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Ibisate, M.

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

Jacob, C. M.

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Jenkins, Y.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Jin, J. I.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Kapanidis, A. N.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Kawabe, Y.

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

Kelley, S. O.

S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999).
[CrossRef] [PubMed]

Khan, G. S.

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

Kitazawa, N.

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

Koh, E.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Koushik, S. V.

S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
[PubMed]

Kul’sarin, A. A.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Kumar, J.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Kumar, S.

S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011).
[CrossRef]

Kwon, Y.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Lantukh, Y. D.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Le Reste, L.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Lee, C.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Letsinger, R. L.

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Letuta, S. N.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Lewis, F. D.

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Li, M.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

Li, X.

W. Long, W. Zou, X. Li, J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

Li, Y.

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

Lin, T.

T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
[CrossRef]

Linhard, V. N.

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

Long, W.

López, C.

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Madhwal, D.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Mathur, P. C.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Mauss, Y.

G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Medintz, I. L.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Melinger, J. S.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Mishra, G.

S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011).
[CrossRef]

Mohan, D.

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

Moses, D.

C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
[CrossRef]

Murphy, C. J.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Navarathne, D.

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

Neelakandan, P. P.

K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
[CrossRef] [PubMed]

Ner, Y.

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

Ogata, N.

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

Pashkevich, S. N.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Periz, J.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Pinheiro, A. V.

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

Prasuhn, D. E.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Proctor, T. J.

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Rajendran, A.

A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
[CrossRef] [PubMed]

Ramaiah, D.

K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
[CrossRef] [PubMed]

Rant, U.

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

Rupasov, A. A.

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

Sahare, P. D.

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

Sanchez Mosteiro, G.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Sandin, P.

J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
[CrossRef] [PubMed]

Sanju, K. S.

K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
[CrossRef] [PubMed]

Sauer, M.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Schuster, M.

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

Selanger, K. A.

K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Shah, A.

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

Sharma, V. K.

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shi, R.

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

Shih, W. M.

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

Sikkeland, T.

K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Singh, I.

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

Sotzing, G. A.

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

Spaeth, H.

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

Steckl, A. J.

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Stewart, M. H.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Stratis-Cullum, D. N.

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Stuart, J. A.

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

Su, W.

W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
[CrossRef] [PubMed]

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
[CrossRef] [PubMed]

Sugiyama, H.

A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
[CrossRef] [PubMed]

Susumu, K.

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

Thaler, C.

S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
[PubMed]

Tinnefeld, P.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Turberfield, A. J.

J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007).
[CrossRef] [PubMed]

Turro, N. J.

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

Uphoff, S.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

van de Linde, S.

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Van Hulst, N. F.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

Vogel, S. S.

S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
[PubMed]

Wang, L.

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

Wasielewski, M. R.

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Watanabe, Y.

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

Wu, T.

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Yan, H.

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

Yang, C.

C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
[CrossRef]

You, H.

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

Zhang, Y.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Zhao, M.

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

Zia-ur-Rehman,

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

Zou, W.

Adv. Mater.

C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003).
[CrossRef]

Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[CrossRef]

Adv. Opt. Mater.

M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009).
[CrossRef] [PubMed]

A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012).
[CrossRef] [PubMed]

W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012).
[CrossRef]

Biopolymers

G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977).
[CrossRef] [PubMed]

Biosens. Bioelectron.

F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004).
[CrossRef] [PubMed]

Chem. Commun. (Camb.)

D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011).
[CrossRef] [PubMed]

K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011).
[CrossRef] [PubMed]

Chemistry

W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004).
[CrossRef] [PubMed]

J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008).
[CrossRef] [PubMed]

K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010).
[CrossRef] [PubMed]

J. Lumin.

N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012).
[CrossRef]

D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011).
[CrossRef]

J. Opt.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

J. Photochem. Photobiol. B

G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012).
[CrossRef] [PubMed]

J. Phys. Chem.

K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

J. Phys. Chem. B

Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007).
[CrossRef] [PubMed]

J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007).
[CrossRef] [PubMed]

Langmuir

H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[CrossRef] [PubMed]

Nano Lett.

J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002).
[CrossRef]

Nanomaterials

A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012).
[CrossRef]

Nat. Methods

S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007).
[CrossRef] [PubMed]

A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011).
[CrossRef] [PubMed]

Nat. Photonics

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Spectrosc.

Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011).
[CrossRef]

Sci Rep

W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013).
[CrossRef] [PubMed]

Sci. China Chem.

Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012).
[CrossRef]

Sci. STKE

S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006).
[PubMed]

Science

S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999).
[CrossRef] [PubMed]

C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993).
[CrossRef] [PubMed]

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997).
[CrossRef] [PubMed]

Small

J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011).
[CrossRef] [PubMed]

Soft Matter

S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Images of DNA-CTMA molecular waveguide and DNA-CTMA nanofibers. (a) Schematic image of a DNA molecular waveguide, right part is the cutaway view. CTMA groups: white; phosphate backbone: yellow; DNA base pairs: indigo. (b) Sectional schematic view of DNA-CTMA nanofiber, the surfaced tube is a DNA-CTMA molecular waveguide. (c) SEM image of a 560-nm-diameter DNA-CTMA nanofiber on the surface of silicon wafer. (d) TEM image of a 400-nm-diameter dye-doped DNA-CTMA nanofiber. Scale bar: 1 μm.

Fig. 2
Fig. 2

PL images and graphs of PL moving distance vs. time of DNA-CTMA nanofiber and PMMA nanofiber. (a) Microscope images of a DNA-CTMA nanofiber (up first) and 4 captured images of the moving PL of the DNA-CTMA nanofiber (down others). (b) PL transmission distance vs. PL transmission time according to the PL transmission movie in (a). (c) Microscope images of a PMMA nanofiber (up) and 4 captured images of the moving PL of the PMMA nanofiber (down). (d) Graph of PL transmission distance and transmission time according to the PL transmission movie in (c). Scale bar: 200 μm (bright background), 100 μm (dark background).

Fig. 3
Fig. 3

3D schematic illustration of DNA molecular waveguide. (a) 3D schematic model of DNA double strand with R6G (red molecules) intercalating. The green arrows show the transmission direction of excitation laser at wavelength of 532 nm and the red ones indicate the emitted PL. (b) 3D view of DNA double strand with Hoechst 33258 (blue molecules) binding. The laser (purple arrow) is at wavelength of 355 nm and the blue arrows indicate the emitted PL. (c) Sectional view comparison of anchor position difference of dye molecules in the DNA photonic wire. The DNA bases and the phosphate backbone are depicted by indigo rods and yellow rods, respectively. The phosphate backbone and bases are not illustrated with different colors in (a) and (b) so as to clearly show the dye molecules.

Fig. 4
Fig. 4

PL images, graph of PL moving distance vs. time and spectra of dye-DNA molecular waveguide. (a) Microscopy images of the 1% R6G doped DNA nanofiber (about 600 nm in diameter) excited by 532 nm laser (63 μW) in dark background with 532 nm filter. Interval time of subplots: 4 minutes. Scale bar: 50 μm. (b) PL transmission distance vs. PL transmission time according to the PL transmission images in (a). (c) PL spectrum of the excited DNA nanofiber according to the PL transmission images in (a). (d) Microscopy image of a 1% Hoechst 33258 doped DNA nanofiber (about 540 nm in diameter) coupled with a taper in bright background (up, scale bar, 10 μm) and the image under 355 nm laser exciting (10 MHz pulsed laser, 70 nW) in dark background with 355 nm filter (down, scale bar, 10 μm). (e) PL spectrum of the DNA nanofiber in (d).

Fig. 5
Fig. 5

FRET-mediated PL images in DNA molecular waveguide. (a) Microscopy images of three dyes doped DNA nanofiber (about 480 nm in diameter) excited by 355 nm laser (55 nW) in dark background with 355 nm filter. Interval time between two PL images: 10 minutes. Scale bar, 10 μm. (b) 3D schematic model of DNA (yellow atoms) with Hoechst 33258 (blue atoms), acriflavine (green atoms) and R6G (red atoms) attached. Purple arrows indicate 355 nm laser transmission. The blue, green and red arrows depict the PL emitted from Hoechst 33258, acriflavine and R6G, respectively. The gray are unreacted dye molecules. All colored arrows/symbols are the same below. (c) The same schematic model in (b) after being excited by 355 nm laser for certain time. White atoms: bleached dye molecules (the same below). (d) The same schematic model in (c) after three-color PL separation. (e) Normalized three-color PL spectrum except for the stationary coupling zone of the excited DNA nanofiber microscopy image on the top in (a) and also PL spectrum of (b). (f) Normalized three-color PL spectrum except for the PL in the stationary coupling zone of the excited DNA nanofiber microscopy image on the bottom in (a) and also PL spectrum of (c). (g) Normalized three-color PL spectrum except for the PL in the stationary coupling zone in (d).

Metrics