Abstract

We study a photonic crystal (PhC) heterostructure cavity consisting of gain medium in a three-dimensional (3D) PhC sandwiched between two identical passive multilayers. For this structure, based on Korringa-Kohn-Rostoker method, we observe a decrease in the lasing threshold of two orders of magnitude, as compared with a stand-alone 3D PhC. We attribute this remarkable decrease in threshold gain to the overlap of the defect cavity mode with the reduced group velocity region of the PhC’s dispersion, and the associated enhancement in the distributed feedback from the ordered layers of the PhC. The obtained results show the potency for designing PhC-based, compact on-chip lasers with ultra-low thresholds.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. R. Herrmann, T. Snner, T. Hein, A. Lffler, M. Kamp, A. Forchel, “Ultrahigh-quality photonic crystal cavity in GaAs,” Opt. Lett. 31, 1229–1231 (2006).
    [CrossRef] [PubMed]
  4. H. Y. Ryu, M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28, 2390–2392 (2003).
    [CrossRef] [PubMed]
  5. L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
    [CrossRef]
  6. F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
    [CrossRef]
  7. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
    [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  9. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
    [CrossRef]
  10. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 167–176 (1999).
    [CrossRef] [PubMed]
  11. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [CrossRef]
  12. K. Sakoda, K. Ohtaka, T. Ueta, “Low-threshold laser oscillation due to group-velocity anomaly peculiar to two and three-dimensional photonic crystals,” Opt. Express 4, 481–489 (1999).
    [CrossRef] [PubMed]
  13. P.-H. Weng, T.-T. Wu, T.-C. Lu, S.-C. Wang, “Threshold gain analysis in GaN-based photonic crystal surface emitting lasers,” Opt. Lett. 36, 1908–1910 (2011).
    [CrossRef] [PubMed]
  14. M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
    [CrossRef] [PubMed]
  15. M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
    [CrossRef]
  16. M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
    [CrossRef]
  17. N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  18. N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
    [CrossRef]
  19. M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
    [CrossRef]
  20. S. Furumi, “Recent advances in polymer colloidal crystal lasers,” Nanosale 4, 5564–5571 (2012).
    [CrossRef]
  21. F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
    [CrossRef]
  22. http://refractiveindex.info
  23. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  24. S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
    [CrossRef] [PubMed]
  25. K. Sakoda, Optical properties of Photonic crystals (Springer-Verlag, Berlin, 2001)
    [CrossRef]
  26. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, C. Jagadish, “Optimization of gain-assisted waveguiding in metaldielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
    [CrossRef] [PubMed]
  27. Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
    [CrossRef] [PubMed]

2013 (2)

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
[CrossRef] [PubMed]

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

2012 (2)

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

S. Furumi, “Recent advances in polymer colloidal crystal lasers,” Nanosale 4, 5564–5571 (2012).
[CrossRef]

2011 (2)

P.-H. Weng, T.-T. Wu, T.-C. Lu, S.-C. Wang, “Threshold gain analysis in GaN-based photonic crystal surface emitting lasers,” Opt. Lett. 36, 1908–1910 (2011).
[CrossRef] [PubMed]

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

2010 (1)

2009 (1)

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

2007 (1)

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

2006 (2)

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

R. Herrmann, T. Snner, T. Hein, A. Lffler, M. Kamp, A. Forchel, “Ultrahigh-quality photonic crystal cavity in GaAs,” Opt. Lett. 31, 1229–1231 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

2001 (2)

S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

1999 (3)

1998 (1)

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

1990 (1)

S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Aktsipetrov, O. A.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Baughman, R. H.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Bawendi, M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Caruge, J. M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Chen, W.-Q.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

Cheylan, S.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

DeLong, M. C.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Dong, X.-Z.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Duan, X.-M.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

Forchel, A.

Furumi, S.

S. Furumi, “Recent advances in polymer colloidal crystal lasers,” Nanosale 4, 5564–5571 (2012).
[CrossRef]

Handapangoda, D.

Hein, T.

Herrmann, R.

Jagadish, C.

Jin, F.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kamp, M.

Kedia, S.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kooi, S.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, W.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Lffler, A.

Lu, T.-C.

Modinos, A.

N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Murzina, T. V.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Notomi, M.

OBrien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ohtaka, K.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Polson, R. C.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Prasad, P. N.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Premaratne, M.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
[CrossRef] [PubMed]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

D. Handapangoda, I. D. Rukhlenko, M. Premaratne, C. Jagadish, “Optimization of gain-assisted waveguiding in metaldielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[CrossRef] [PubMed]

Ray, A. K.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

Razdolski, I. E.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Reddy, M. S.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
[CrossRef] [PubMed]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

Rukhlenko, I. D.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
[CrossRef] [PubMed]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

D. Handapangoda, I. D. Rukhlenko, M. Premaratne, C. Jagadish, “Optimization of gain-assisted waveguiding in metaldielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[CrossRef] [PubMed]

Ryu, H. Y.

Sakoda, K.

Salehpour, M.R.

S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
[CrossRef] [PubMed]

Satpathy, S.

S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
[CrossRef] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Shi, L.-T.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Shkunov, M. N.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Sinha, S.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

Snner, T.

Song, Y.

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Susa, N.

N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
[CrossRef]

Sychev, F. Yu.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Thomas, E. L.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Trifonov, T.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

Ueta, T.

Vardeny, Z. V.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Vijaya, R.

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Low-threshold lasing in active opal photonic crystals,” Opt. Lett. 38, 1046–1048 (2013).
[CrossRef] [PubMed]

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

Wang, S.-C.

Weng, P.-H.

Wu, T.-T.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yan, Q.

Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
[CrossRef] [PubMed]

Yannopapas, V.

N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yoon, J.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Zakhidov, A. A.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Zhang, Ze

S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
[CrossRef] [PubMed]

Zhao, X. S.

Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
[CrossRef] [PubMed]

Zhao, Z.-S.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Zheng, M.-L.

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Zhou, Z.

Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mat. (1)

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mat. 12, 2126, (2002).
[CrossRef]

Appl. Phys. Lett. (4)

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95, 163301 (2009).
[CrossRef]

L.-T. Shi, F. Jin, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals,” Appl. Phys. Lett. 91, 031109 (2007).
[CrossRef]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid onedimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

IEEE Photonics J. (1)

M. S. Reddy, S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, I. D. Rukhlenko, M. Premaratne, “Analysis of lasing in dye-doped photonic crystals,” IEEE Photonics J. 5, 4700409 (2013).
[CrossRef]

J. Appl. Phys. (2)

N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

J. Nanophotonics (1)

M. S. Reddy, R. Vijaya, I. D. Rukhlenko, M. Premaratne, “Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries,” J. Nanophotonics 6, 063526 (2012).
[CrossRef]

Langmuir (1)

Q. Yan, Z. Zhou, X. S. Zhao, “Inward-growing self-assembly of colloidal crystal films on horizontal substrates,” Langmuir 21, 3158–3164 (2005).
[CrossRef] [PubMed]

Nanosale (1)

S. Furumi, “Recent advances in polymer colloidal crystal lasers,” Nanosale 4, 5564–5571 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

S. Satpathy, Ze Zhang, M.R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures,” Phys. Rev. Lett. 64, 1239–1242 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other (2)

K. Sakoda, Optical properties of Photonic crystals (Springer-Verlag, Berlin, 2001)
[CrossRef]

http://refractiveindex.info

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of different designs studied: (a) stand-alone 3D PhC made of colloids, (b) multilayer stack with a defect layer, and (c) heterostructure with a 3D PhC sandwiched between multilayers. Brown represents the active medium. In (a) and (c), the colloids are surrounded by air voids. Green arrow shows the direction of incidence of the pumping beam.

Fig. 2
Fig. 2

(a) Reflection spectrum of the stand-alone multilayer stack, (b) group velocity (black curves) and dispersion relation (pink curves) in the [111] direction of the stand-alone 3D PhC, (c) transmission spectrum of cavity formed by sandwiched homogeneous medium (ε′ = 2.53) with thickness (tu) equal to the thickness (tPhC) of 3D PhC, and (d) transmission spectrum of proposed cavity with 30 layers of sandwiched 3D PhC. Five bilayers on either side of the homogeneous medium and 3D PhC are used in calculating (c) and (d). Region I shows the range of frequencies with reduced group velocity whereas region II represents the stopband of the 3D PhC without an allowed mode in the new cavity spectrum.

Fig. 3
Fig. 3

Transmission spectrum of the heterostructure PhC cavity with 10 (green curve), 20 (black curve), and 30 (red curve) layers of sandwiched 3D PhC and five bilayers on either side of the 3D PhC. Region I shows the range of frequencies with reduced group velocity and region II represents the stopband of the 3D PhC, as mentioned in Fig. 2.

Fig. 4
Fig. 4

(a) Transmission as a function of normalized frequency for heterostructure PhC cavity, calculated by assuming the complex-valued permittivity (ε″ = −0.0005) for the dielectric spheres composing the sandwiched 3D PhC. (b) Transmission spectrum of the heterostructure cavity with passive sandwiched 3D PhC (ε″ = 0). We used 30 layers in the sandwiched 3D PhC with five bilayers on either side in calculations. One can see from (a) that the emission of cavity modes near the band edges of the 3D PhC (marked with arrows) is enhanced as compared to the other cavity modes, due to the increased light-matter interaction.

Fig. 5
Fig. 5

(a) Transmittance (in logarithmic scale) for cavity mode near the high-frequency band edge [right arrow in Fig. 4(a)] of the heterostructure cavity and (b) the lasing threshold for cavity modes (filled circles) of the heterostructure PhC cavity and the frequencies near the band edges for the stand-alone 3D PhC (filled squares). The lasing threshold decreases by two orders of magnitude for the cavity mode in the vicinity of the stopband edges. The calculated group velocity of the cavity modes of the heterostructure PhC and in the stand-alone 3D PhC are marked as open circles and open squares, respectively.

Fig. 6
Fig. 6

(a) Variation of threshold gain of the heterostructure cavity (black curve) and reflection of the bare multilayer stack (blue curve) as function of number of periodic layers in the multilayer stack. (b) Threshold gain of 3D PhC (open circles) and heterostructure PhC cavity (filled circles) as functions of number N of layers in 3D PhC. The lasing wavelengths are shown by star symbols. The number of periodic multilayers on each side of the PhC equals 5 and a = 367 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ E t r ] g i + = i Q g i ; g i I [ E i n ] g i + ,
[ E r f ] g i = i Q g i ; g i I I I [ E i n ] g i + ,
g = m 1 b x + m 2 b y
b i a j = 2 π δ i j .
K g ± = ( k | | + g , ± [ q 2 ( k | | + g ) 2 ] 1 / 2 ) ,
T = g , i [ E t r ] g i + ( [ E t r ] g i + ) * K g z + i [ E i n ] g i + ( [ E i n ] g i + ) * K g z + ,
R = g , i [ E r f ] g i + ( [ E r f ] g i + ) * K g z + i [ E i n ] g i + ( [ E i n ] g i + ) * K g z + .
ε t h = 8 ε ¯ v g f ω t P h C log ( 1 + V g / c 1 V g / c ) ,
ε ¯ = 1 V 0 V 0 d r ε ( r ) .

Metrics