Abstract

We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses’ repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
    [CrossRef]
  2. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [CrossRef]
  3. S. D. Jackson, T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [CrossRef] [PubMed]
  4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [CrossRef] [PubMed]
  5. M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
    [CrossRef]
  6. M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [CrossRef]
  7. W. Zhou, D. Shen, Y. Wang, H. Ma, F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
    [CrossRef] [PubMed]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  9. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
    [CrossRef]
  10. M. S. Kang, N. Y. Joly, P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
    [CrossRef] [PubMed]
  11. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
    [CrossRef]
  12. M. J. Guy, D. U. Noske, A. Boskovic, J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994).
    [CrossRef] [PubMed]
  13. V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
    [CrossRef]
  14. H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [CrossRef]
  15. E. P. Ippen, L. Y. Liu, H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
    [CrossRef] [PubMed]
  16. A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
    [CrossRef]
  17. C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
    [CrossRef]
  18. K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
    [CrossRef]
  19. D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [CrossRef]
  20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [CrossRef]
  21. A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [CrossRef]
  22. J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
    [CrossRef]
  23. H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013).
    [CrossRef] [PubMed]
  24. S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
    [CrossRef]
  25. S. T. Hendow, S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
    [CrossRef] [PubMed]
  26. H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
    [CrossRef]
  27. A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.
  28. A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
    [CrossRef]
  29. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [CrossRef] [PubMed]
  30. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
    [CrossRef]

2013

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[CrossRef] [PubMed]

W. Zhou, D. Shen, Y. Wang, H. Ma, F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
[CrossRef] [PubMed]

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

M. S. Kang, N. Y. Joly, P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
[CrossRef] [PubMed]

H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013).
[CrossRef] [PubMed]

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

2012

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[CrossRef]

2011

2010

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

S. T. Hendow, S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

2009

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

2007

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

2005

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

2000

A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[CrossRef]

1998

1997

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

1994

H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[CrossRef]

M. J. Guy, D. U. Noske, A. Boskovic, J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994).
[CrossRef] [PubMed]

1993

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

1992

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[CrossRef]

K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

1990

Abramski, K. M.

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

Ahmad, F.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Ahmad, H.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Alam, S. U.

Ali, N. M.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Boskovic, A.

Chavez-Pirson, A.

Chen, C. H.

Chen, D.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Chen, H. R.

Chen, K. P.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[CrossRef] [PubMed]

Chen, T.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[CrossRef] [PubMed]

Chernysheva, M. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Chi, Y. C.

Daniel, J. M. O.

Dianov, E. M.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Dimyati, K.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Dubov, M.

A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Fang, Q.

Fermann, M. E.

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

Geng, J.

J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[CrossRef]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[CrossRef]

Guy, M. J.

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

Hartl, I.

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

Harun, S. W.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[CrossRef]

K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

E. P. Ippen, L. Y. Liu, H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
[CrossRef] [PubMed]

He, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Heberle, A. P.

Heidt, A. M.

Heinemann, S.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Hendow, S. T.

Herfurth, H.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Hsieh, W. F.

Ippen, E. P.

H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[CrossRef]

K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

E. P. Ippen, L. Y. Liu, H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
[CrossRef] [PubMed]

Ivanenko, A.

A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Jackson, S. D.

Jiang, S.

J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[CrossRef]

Joly, N. Y.

Jung, Y.

Kang, M. S.

Kieu, K.

King, T. A.

Kobsev, S.

A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Komarov, A. K.

A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[CrossRef]

Komarov, K. P.

A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[CrossRef]

Krylov, A. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Kryukov, P. G.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Krzempek, K.

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

Lauterborn, T.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Lee, K. F.

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

Li, M.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Li, Z.

Lin, G. R.

Lin, K. H.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Liu, L. Y.

Liu, X.

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

Lu, Y.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Luo, A.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Luo, Z.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Ma, H.

Matsas, V. J.

V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[CrossRef]

Newson, T. P.

V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[CrossRef]

Noske, D. U.

Pantsar, H.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Patwa, R.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[CrossRef]

Petersen, E.

Peyghambarian, N.

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Qian, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Richardson, D. J.

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[CrossRef] [PubMed]

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[CrossRef]

Russell, P. S. J.

Saidin, N.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Shakir, S. A.

Shen, D.

Shi, W.

Simakov, N.

Sobon, G.

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

Sotor, J.

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tamura, K.

H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[CrossRef]

K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Taylor, J. R.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tsai, C. Y.

Turitsyn, S.

A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Wang, C.

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

Wang, F.

W. Zhou, D. Shen, Y. Wang, H. Ma, F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Wang, Q.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[CrossRef]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[CrossRef] [PubMed]

Wang, Y.

Wu, C. H.

Wu, H. H.

Xu, S.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Xu, W.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Yang, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Yang, T.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Yang, Z.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Yoo, K.

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

Yuan, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Zen, D. I. M.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Zervas, M. N.

V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[CrossRef]

Zhang, B.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[CrossRef] [PubMed]

Zhang, W.

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Zhou, W.

ACS Nano

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[CrossRef]

Appl. Phys. Express

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[CrossRef]

Appl. Phys. Lett.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[CrossRef]

Chin. Phys. Lett.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[CrossRef]

Electron. Lett.

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[CrossRef]

K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[CrossRef]

Opt. Commun.

A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[CrossRef]

C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[CrossRef]

J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[CrossRef]

V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

Proc. SPIE

J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[CrossRef]

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[CrossRef]

Other

A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic sketch of the passively mode-locked TDFL.

Fig. 2
Fig. 2

PBs in the passively mode-locked TDFL.

Fig. 3
Fig. 3

Oscilloscope traces of the PBs in the passively mode-locked TDFL. (a): train of PBs; (b): one PB with 14 subpulses.

Fig. 4
Fig. 4

Oscilloscope traces of individual pulse in the passively mode-locked TDFL.

Fig. 5
Fig. 5

Harmonic mode-locked pulse trains in TDFL. F: fundamental frequency.

Fig. 6
Fig. 6

Hysteresis phenomenon of the harmonic mode-locked pulse train’s frequency versus pump power.

Fig. 7
Fig. 7

Oscilloscope traces of pulses with different frequencies and widths in TDFL.

Fig. 8
Fig. 8

Spectra of different cases in TDFL.

Metrics