Abstract

The slanted-edge method specified in ISO Standard 12233, which measures the modulation transfer function (MTF) by analyzing an image of a slightly slanted knife-edge target, is not robust against noise because it takes the derivative of each data line in the edge-angle estimation. We propose here a modified method that estimates the edge angle by fitting a two-dimensional function to the image data. The method has a higher accuracy, precision, and robustness against noise than the ISO 12233 method and is applicable to any arbitrary pixel array, enabling a multidirectional MTF estimate in a single measurement of a starburst image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
    [CrossRef]
  2. S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
    [CrossRef]
  3. F. Chazallet, J. Glasser, “Theoretical bases and measurement of the MTF of integrated image sensors,” Proc. SPIE 549, 131–144 (1985).
    [CrossRef]
  4. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  5. Photography–Electronic Still Picture Cameras–Resolution Measurements, ISO Standard 12233: 2000.
  6. P. D. Burns and D. Williams, “Refined slanted-edge measurement practical camera and scanner testing,” in Proceedings of PICS 2002 (Society for Imaging Science and Technology, Springfield, VA, 1998), pp. 191–195.
  7. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Proceedings of PICS 2000 (Society for Imaging Science and Technology, Springfield, VA, 1998), pp. 135–138.
  8. C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
    [CrossRef]
  9. T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
    [CrossRef]

2013

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

2011

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

2007

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

1991

S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
[CrossRef]

1985

F. Chazallet, J. Glasser, “Theoretical bases and measurement of the MTF of integrated image sensors,” Proc. SPIE 549, 131–144 (1985).
[CrossRef]

Chazallet, F.

F. Chazallet, J. Glasser, “Theoretical bases and measurement of the MTF of integrated image sensors,” Proc. SPIE 549, 131–144 (1985).
[CrossRef]

Funatsu, R.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Glasser, J.

F. Chazallet, J. Glasser, “Theoretical bases and measurement of the MTF of integrated image sensors,” Proc. SPIE 549, 131–144 (1985).
[CrossRef]

Jaeger, A.

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

Klingen, B.

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

Loebich, C.

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

Masaoka, K.

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

Mitani, K.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Nakasu, E.

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

Narayanswamy, R.

S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
[CrossRef]

Nishida, Y.

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

Nojiri, Y.

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Park, S. K.

S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
[CrossRef]

Reichenbach, S. E.

S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
[CrossRef]

Sugawara, M.

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

Wueller, D.

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

Yamashita, T.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Yanagi, T.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Yoshida, T.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

IEEE Trans. Broadcast

K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, Y. Nojiri, “Sensation of realness from high-resolution images of real objects,” IEEE Trans. Broadcast 59(1), 72–83 (2013).
[CrossRef]

Opt. Eng.

S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991).
[CrossRef]

Proc. SPIE

F. Chazallet, J. Glasser, “Theoretical bases and measurement of the MTF of integrated image sensors,” Proc. SPIE 549, 131–144 (1985).
[CrossRef]

C. Loebich, D. Wueller, B. Klingen, A. Jaeger, “Digital camera resolution measurement using sinusoidal Siemens stars,” Proc. SPIE 6502, 65020N (2007).
[CrossRef]

SMPTE Motion Imaging J.

T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE Motion Imaging J. 120(8), 24–31 (2011).
[CrossRef]

Other

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).

Photography–Electronic Still Picture Cameras–Resolution Measurements, ISO Standard 12233: 2000.

P. D. Burns and D. Williams, “Refined slanted-edge measurement practical camera and scanner testing,” in Proceedings of PICS 2002 (Society for Imaging Science and Technology, Springfield, VA, 1998), pp. 191–195.

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Proceedings of PICS 2000 (Society for Imaging Science and Technology, Springfield, VA, 1998), pp. 135–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Slanted-edge method: (a) knife-edge target, and (b) projection, binning, and averaging before forming a one-dimensional edge profile.

Fig. 2
Fig. 2

Errors in the slanted-edge methods: (a) bias due to binning, averaging, and derivative filtering, (b) the means and standard deviations of the estimated edge angles, and (c) the standard deviations of the errors of the MTF estimates at 0.37 cycles/pixel.

Fig. 3
Fig. 3

MTF estimates of curved-edge images using Eqs. (1) and (2): (a) synthetically generated curved-edge simulating a barrel distortion and (b) curved-edge captured with a fisheye lens.

Fig. 4
Fig. 4

Multidirectional slanted-edge method: (a) starburst target and multidirectional ROIs selected on the spoke edges and (b) ROI rotation and pixel projection.

Fig. 5
Fig. 5

Multidirectional MTF estimates of an imaging colorimeter: (a) means (dashed) and standard deviations (solid), the contour plots in polar coordinates using the (b) slanted-edge method and (c) modulated Siemens star method.

Fig. 6
Fig. 6

Multidirectional MTF estimate of an 8K video camera [9] using the multidirectional slanted-edge method: (a) the mean (dashed) and standard deviation (solid) and (b) the contour plot in polar coordinates.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v f i t ( x , y ) = ( v H v L ) normcdf ( x , μ + α y , σ ) + v L ,
v f i t ( x , y ) = ( v H v L ) normcdf ( x , μ + α y + β y 2 , σ ) + v L .

Metrics