Abstract

The paper presents for the first time a study of long-period fiber gratings (LPFGs) applied for the measurements of reactive ion etching (RIE) process effect in various places of a plasma reactor. For the purposes of the experiment a number of highly sensitive LPFGs working at the dispersion turning point was fabricated using electric arc discharges. We show that the LPFGs allow for monitoring of the phenomena taking place in the reactor, especially those resulting in reduction of the LPFG diameter. Results of the measurements supported by simulations have shown that etching rate significantly decreases with elevation of the sample up to 3.6 mm over the electrode in the reactor, and stays constant above this height.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
    [CrossRef]
  2. H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
    [CrossRef]
  3. M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
    [CrossRef]
  4. M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
    [CrossRef]
  5. Y. Tzeng, T. H. Lin, “Dry etching of silicon materials in SF6 based plasmas. Roles of N2O and O2 gas additives,” J. Electrochem. Soc. 134, 2304–2309 (1987).
    [CrossRef]
  6. D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
    [CrossRef]
  7. L.-Y. Shao, J. P. Coyle, S. T. Barry, J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
    [CrossRef]
  8. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [CrossRef]
  9. X. Shu, L. Zhang, I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [CrossRef]
  10. J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
    [CrossRef]
  11. X. Chen, K. Zhou, L. Zhang, I. Bennion, “Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique,” Appl. Opt. 46(4), 451–455 (2007).
    [CrossRef] [PubMed]
  12. P. Pilla, P. F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, A. Cusano, “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Opt. Express 17(22), 20039–20050 (2009).
    [CrossRef] [PubMed]
  13. M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
    [CrossRef]
  14. M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19(9), 7971–7978 (2011).
    [CrossRef] [PubMed]
  15. M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
    [CrossRef]
  16. K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
    [CrossRef]
  17. M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
    [CrossRef]
  18. M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
    [CrossRef]
  19. T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
    [CrossRef]
  20. M. Daimon, A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [CrossRef] [PubMed]
  21. M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
    [CrossRef]
  22. J. W. Coburn, H. F. Winters, “Plasma etching: a discussion of mechanisms,” J. Vac. Sci. Technol. 16(2), 391–403 (1979).
    [CrossRef]
  23. M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
    [CrossRef]
  24. B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
    [CrossRef]
  25. J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
    [CrossRef]

2013 (3)

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[CrossRef]

2012 (1)

2011 (5)

M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19(9), 7971–7978 (2011).
[CrossRef] [PubMed]

L.-Y. Shao, J. P. Coyle, S. T. Barry, J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[CrossRef]

2010 (1)

M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
[CrossRef]

2009 (1)

2007 (2)

2002 (1)

2000 (3)

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

1998 (1)

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

1993 (1)

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

1992 (1)

M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
[CrossRef]

1987 (1)

Y. Tzeng, T. H. Lin, “Dry etching of silicon materials in SF6 based plasmas. Roles of N2O and O2 gas additives,” J. Electrochem. Soc. 134, 2304–2309 (1987).
[CrossRef]

1979 (2)

J. W. Coburn, H. F. Winters, “Plasma etching: a discussion of mechanisms,” J. Vac. Sci. Technol. 16(2), 391–403 (1979).
[CrossRef]

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Albert, J.

Ambrosio, L.

Anma, H.

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

Barnes, M.

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

Barry, S. T.

Bennion, I.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Bock, W. J.

M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19(9), 7971–7978 (2011).
[CrossRef] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
[CrossRef]

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Buosciolo, A.

Campopiano, S.

Chen, J.

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

Chen, X.

Chiang, K. S.

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

Chinnappan, R.

Coburn, J. W.

J. W. Coburn, H. F. Winters, “Plasma etching: a discussion of mechanisms,” J. Vac. Sci. Technol. 16(2), 391–403 (1979).
[CrossRef]

Coyle, J. P.

Cuomo, J. J.

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

Cusano, A.

Cutolo, A.

Daimon, M.

Denda, M.

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Dong, X.

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

Dudek, M.

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

Enomoto, T.

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Gekelman, W.

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

Giordano, M.

Goeckner, M. J.

M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
[CrossRef]

Goree, J.

M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
[CrossRef]

Guarnieri, C. R.

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

Hatanaka, Y.

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

Hopwood, J.

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

Ikeda, T.

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

Jacobs, B.

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

John, M. S.

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Jose, D.

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Kanka, J.

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[CrossRef]

Koba, M.

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Lin, T. H.

Y. Tzeng, T. H. Lin, “Dry etching of silicon materials in SF6 based plasmas. Roles of N2O and O2 gas additives,” J. Electrochem. Soc. 134, 2304–2309 (1987).
[CrossRef]

Liu, Y.

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

Malachovska, V.

Manzillo, P. F.

Martinu, L.

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

Masumura, A.

Michalak, B.

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

Mikulic, P.

M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19(9), 7971–7978 (2011).
[CrossRef] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
[CrossRef]

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Nakata, H.

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Nampoori, V. P. N.

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Ng, A.

Ng, M. N.

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

Pilla, P.

Poitras, D.

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

Pribyl, P.

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

Radhakrishnan, P.

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Shao, L.-Y.

Sheridan, T. E.

M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
[CrossRef]

Shu, X.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Smietana, M.

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19(9), 7971–7978 (2011).
[CrossRef] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
[CrossRef]

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Toki, J.

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

Tripathi, S.

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Tzeng, Y.

Y. Tzeng, T. H. Lin, “Dry etching of silicon materials in SF6 based plasmas. Roles of N2O and O2 gas additives,” J. Electrochem. Soc. 134, 2304–2309 (1987).
[CrossRef]

Vallabhan, C. P. G.

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Whitehair, S. J.

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

Winters, H. F.

J. W. Coburn, H. F. Winters, “Plasma etching: a discussion of mechanisms,” J. Vac. Sci. Technol. 16(2), 391–403 (1979).
[CrossRef]

Yasuoka, A.

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Zhang, L.

Zhou, K.

Zourob, M.

Appl. Opt. (2)

Electron. Lett. (1)

K. S. Chiang, Y. Liu, M. N. Ng, X. Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[CrossRef]

J. Electrochem. Soc. (1)

Y. Tzeng, T. H. Lin, “Dry etching of silicon materials in SF6 based plasmas. Roles of N2O and O2 gas additives,” J. Electrochem. Soc. 134, 2304–2309 (1987).
[CrossRef]

J. Lightwave Technol. (3)

J. Vac. Sci. Technol. (1)

J. W. Coburn, H. F. Winters, “Plasma etching: a discussion of mechanisms,” J. Vac. Sci. Technol. 16(2), 391–403 (1979).
[CrossRef]

J. Vac. Sci. Technol. A (2)

J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo, “Langmuir probe measurements of a radio frequency induction plasma,” J. Vac. Sci. Technol. A 11(1), 152–156 (1993).
[CrossRef]

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Enomoto, M. Denda, A. Yasuoka, H. Nakata, “Loading effect and temperature dependence of etch rate in CF4 plasma,” Jpn. J. Appl. Phys. 18(1), 155–163 (1979).
[CrossRef]

Meas. Sci. Technol. (4)

M. Smietana, W. J. Bock, P. Mikulic, “Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation,” Meas. Sci. Technol. 21(2), 025309 (2010).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[CrossRef]

M. Smietana, W. J. Bock, P. Mikulic, J. Chen, “Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique towards its limits,” Meas. Sci. Technol. 22(1), 015201 (2011).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Fluids B (1)

M. J. Goeckner, J. Goree, T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Phys. Fluids B 4(6), 1663–1670 (1992).
[CrossRef]

Phys. Plasmas (1)

B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, “Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath,” Phys. Plasmas 18(5), 053503 (2011).
[CrossRef]

Phys. Status Solidi A (1)

M. Śmietana, M. Dudek, M. Koba, B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers,” Phys. Status Solidi A 210(10), 2100–2105 (2013).
[CrossRef]

Sens. Actuators B Chem. (1)

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[CrossRef]

Thin Solid Films (1)

D. Jose, M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “An optical fibre based evanescent wave sensor to monitor the deposition rate of thin films,” Thin Solid Films 325(1–2), 264–267 (1998).
[CrossRef]

Vacuum (1)

H. Anma, J. Toki, T. Ikeda, Y. Hatanaka, “Uniform deposition of SiC thin films on plastics surfaces,” Vacuum 59(2-3), 665–671 (2000).
[CrossRef]

Other (1)

M. Śmietana, M. Koba, S. Tripathi, P. Mikulic, W. J. Bock, “Improving sensing properties of the long-period gratings by reactive ion etching,” in Proceedings of Seventh International Conference on Sensing Technology (IEEE, 2013), pp. 669–672.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the LPFG and silicon wafer placement in the process chamber. The LPFG’s position h has been changed in range 1.2 to 12 mm by placing the fiber between the glass plates of 1.2 mm in thickness. The elements are not in scale.

Fig. 2
Fig. 2

Initial spectra of the investigated LPFG surrounded by air (n = 1) and water (n = 1.318 at λ = 1550 nm). Results of simulation are given for comparison.

Fig. 3
Fig. 3

Evolution of the LPFG spectrum induced by ten subsequent etching processes at different sample height (1.2 to 12 mm) when the LPFG was surrounded by (a) air and (b) water.

Fig. 4
Fig. 4

Resonance wavelength shifts at various stages of the etching experiment where (a) shows results for each etching step and (b) shows results of simulation when cladding radius is reduced.

Fig. 5
Fig. 5

Etching rate at various height in plasma reactor calculated by matching results of λres for experimental results and simulations. Matching has been performed for both results obtained for the LPFGs surrounded with air and water. Etching rate obtained for oxidized Si wafer placed on the electrode and measured with spectroscopic ellipsometry is given for comparison.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ r e s m = ( n e f f 01 n e f f 0 m ) Λ
δ λ r e s m u 2 ( λ r e s m ) 2 Λ 8 π 2 n c l ( 1 ρ ¯ 2 1 ρ 2 ) n c l Δ Λ J 0 2 ( u ) + J 1 2 ( u ) × { ( a ρ ¯ ) 2 [ J 0 2 ( u a ρ ¯ ) + J 1 2 ( u a ρ ¯ ) ] ( a ρ ) 2 [ J 0 2 ( u a ρ ) + J 1 2 ( u a ρ ) ] }

Metrics