Abstract

We demonstrate a high reflectivity (> 99%), low-loss (< 0.1%) and aberrations-free (2% of λ rms phase fluctuations) concave Bragg mirror (20mm radius of curvature) integrating a photonic crystal with engineered spherical phase and amplitude transfer functions, based on a III–V semiconductors flat photonics technology. This mirror design is of high interest for highly coherent high power stable external cavity semiconductor lasers, exhibiting very low noise. We design the photonic crystal for operation in the pass band. The approach incorporates spatial, spectral (filter bandwidth= 5nm) and polarization filtering capabilities. Thanks to the mirror, a compact single mode TEM00 2mm-long air gap high finesse (cold cavity Q-factor 106 − 107) stable laser cavity is demonstrated with a GaAs-based quantum-wells 1/2-VCSEL gain structure at 1μm. Excellent laser performances are obtained in single frequency operation: low threshold density of 2kW/cm2 with high differential efficiency (21%). And high spatial, temporal and polarization coherence: TEM00 beam close to diffraction limit, linear light polarization (> 60dB), Side Mode Suppression Ratio > 46dB, relative intensity noise at quantum limit (< −150dB) in 1MHz–84GHz radio frequency range, and a theoretical linewidth fundamental limit at 10 Hz (Q-factor ∼ 3.1013).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, M. Stern, J. Coppeta, “Single transverse mode optical resonators,” Opt. Express 13, 171–181 (2005).
    [CrossRef] [PubMed]
  2. N. Laurand, C. L. Lee, E. Gu, J. E. Hastie, S. Calvez, M. D. Dawson, “Microlensed microchip VECSEL,” Opt. Express 15, 9341–9346 (2007).
    [CrossRef] [PubMed]
  3. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “Multiwatt–power highly–coherent compact single–frequency tunable vertical–external–cavity–surface–emitting–semiconductor–laser,” Opt. Express 18, 14627–14636 (2010).
    [CrossRef] [PubMed]
  4. A. Garnache, A. Ouvrard, D. Romanini, “Single–frequency operation of external–cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15, 9403–9417 (2007).
    [CrossRef] [PubMed]
  5. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
    [CrossRef] [PubMed]
  6. M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
    [CrossRef]
  7. J.-H. Baek, D.-S. Song, I.-K. Hwang, H.-H. Lee, Y. Lee, Y. -G. Ju, T. Kondo, T. Miyamoto, F. Koyama, “Transverse mode control by etch-depth tuning in 1120-nm GaInAs/GaAs photonic crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 859–867 (2004).
    [CrossRef] [PubMed]
  8. T. Czyszanowski, M. Dems, H. Thienpont, K. Panajotov, “Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL,” Opt. Express 15, 1301–1306 (2007).
    [CrossRef] [PubMed]
  9. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
    [CrossRef] [PubMed]
  10. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
    [CrossRef] [PubMed]
  11. M. M. Vogel, M. Rumpel, B. Weichelt, A. Voss, M. Haefner, C. Pruss, W. Osten, M. A. Ahmed, T. Graf, “Single-layer resonant-waveguide grating for polarization and wavelength selection in Yb:YAG thin-disk lasers,” Opt. Express 20, 4024–4031 (2012).
    [CrossRef] [PubMed]
  12. D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).
  13. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12, 1575–1582 (2004).
    [CrossRef] [PubMed]
  14. S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
    [CrossRef]
  15. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
    [CrossRef]
  16. The free-software used for the calculation can be downloaded at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe .
  17. M. G. Moharam, E. B. Grann, D. a. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  18. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  19. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  20. C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
    [CrossRef]
  21. A. E. Siegman, Lasers (University Science Books, 1986).
  22. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17, 9503–9508 (2009).
    [CrossRef] [PubMed]
  23. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
    [CrossRef]
  24. M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
    [CrossRef]
  25. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).
  26. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  27. M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
    [CrossRef]
  28. C. Henry, “Theory of the phase noise and power spectrum of a single mode injection laser,” IEEE J. Quantum Electron. 19(9), 1391–1397 (1983).
    [CrossRef]
  29. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
    [CrossRef]
  30. F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
    [CrossRef]

2013

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

2012

2010

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “Multiwatt–power highly–coherent compact single–frequency tunable vertical–external–cavity–surface–emitting–semiconductor–laser,” Opt. Express 18, 14627–14636 (2010).
[CrossRef] [PubMed]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

2009

2008

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

2007

2006

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

2005

2004

2003

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

1998

1997

1996

1995

1983

C. Henry, “Theory of the phase noise and power spectrum of a single mode injection laser,” IEEE J. Quantum Electron. 19(9), 1391–1397 (1983).
[CrossRef]

Ahmed, M. A.

Amann, M.-C.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Astilean, S.

Baek, J.-H.

Bansropun, S.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Barat, D.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Beaudoin, G.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Benbakir, B.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Boehm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Böhm, G.

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Boutami, S.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Britzger, M.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Brückner, F.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Burmeister, O.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Calvez, S.

Cambril, E.

Cassette, S.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Cerda-Méndez, E. A.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Cerutti, L.

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

Chavel, P.

Clausnitzer, T.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Cluzel, B.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

Collin, S.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Coppeta, J.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

Czyszanowski, T.

Danzmann, K.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Dawson, M. D.

de Fornel, F.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Dems, M.

Devautour, M.

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

Fabre, N.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Fan, S.

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Friedrich, D.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Garnache, A.

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “Multiwatt–power highly–coherent compact single–frequency tunable vertical–external–cavity–surface–emitting–semiconductor–laser,” Opt. Express 18, 14627–14636 (2010).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17, 9503–9508 (2009).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, D. Romanini, “Single–frequency operation of external–cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15, 9403–9417 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Garrigues, M.

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Gaylord, T. K.

Genty, F.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Graf, T.

Grann, E. B.

Gu, E.

Haefner, M.

Halbritter, H.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Hastie, J. E.

Hattori, H.

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Henry, C.

C. Henry, “Theory of the phase noise and power spectrum of a single mode injection laser,” IEEE J. Quantum Electron. 19(9), 1391–1397 (1983).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

Hwang, I.-K.

Ju, Y. -G.

Kilic, O.

Kim, S.

Kley, E.-B.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Kondo, T.

Koyama, F.

Kuznetsov, M.

Lalanne, P.

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Launois, H.

Laurain, A.

Laurand, N.

Leclercq, J. L.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Lee, C. L.

Lee, H.-H.

Lee, M. S. L.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Lee, Y.

Letartre, X.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Li, L.

Lippens, D.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Loiseaux, B.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Lousse, V.

Maute, M.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Meissner, P.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Mélique, X.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Michon, A.

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

Miyamoto, T.

Moharam, M. G.

Morris, G. M.

Myara, M.

Osten, W.

Ouvrard, A.

A. Garnache, A. Ouvrard, D. Romanini, “Single–frequency operation of external–cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15, 9403–9417 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Panajotov, K.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

Plouhinec, P.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Pommet, D. a.

Pruss, C.

Regreny, P.

Ribot, C.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Rojo-Romeo, P.

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Romanini, D.

A. Garnache, A. Ouvrard, D. Romanini, “Single–frequency operation of external–cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15, 9403–9417 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Rouillard, Y.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Rumpel, M.

Sagnes, I.

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “Multiwatt–power highly–coherent compact single–frequency tunable vertical–external–cavity–surface–emitting–semiconductor–laser,” Opt. Express 18, 14627–14636 (2010).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17, 9503–9508 (2009).
[CrossRef] [PubMed]

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Schnabel, R.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Seassal, C.

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Sellahi, M.

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Solgaard, O.

Song, D.-S.

Stern, M.

Suh, W.

Symonds, C.

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Thenot, D.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

Thienpont, H.

TÜnnermann, A.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Vanbésien, O.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Vicet, A.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

Vogel, M. M.

Voss, A.

Weichelt, B.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

Adv. Opt. Mater.

C. Ribot, M. S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[CrossRef]

IEEE J. Quantum Electron.

C. Henry, “Theory of the phase noise and power spectrum of a single mode injection laser,” IEEE J. Quantum Electron. 19(9), 1391–1397 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Devautour, A. Michon, G. Beaudoin, I. Sagnes, L. Cerutti, A. Garnache, “Thermal management for high-power VECSEL emitting in the near- and mid-IR,” IEEE J. Sel. Top. Quantum Electron. 19, 1701108 (2013).
[CrossRef]

IEEE Photonics Technol. Lett.

S. Boutami, B. BenBakir, H. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[CrossRef]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 116, 1–5 (2010).

Opt. Commun.

F. Riemenschneider, I. Sagnes, G. Böhm, H. Halbritter, M. Maute, C. Symonds, M.-C. Amann, P. Meissner, “A new concept for tunable long wavelength VCSEL,” Opt. Commun. 222, 341–350 (2003).
[CrossRef]

Opt. Express

J.-H. Baek, D.-S. Song, I.-K. Hwang, H.-H. Lee, Y. Lee, Y. -G. Ju, T. Kondo, T. Miyamoto, F. Koyama, “Transverse mode control by etch-depth tuning in 1120-nm GaInAs/GaAs photonic crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 859–867 (2004).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12, 1575–1582 (2004).
[CrossRef] [PubMed]

M. Kuznetsov, M. Stern, J. Coppeta, “Single transverse mode optical resonators,” Opt. Express 13, 171–181 (2005).
[CrossRef] [PubMed]

T. Czyszanowski, M. Dems, H. Thienpont, K. Panajotov, “Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL,” Opt. Express 15, 1301–1306 (2007).
[CrossRef] [PubMed]

N. Laurand, C. L. Lee, E. Gu, J. E. Hastie, S. Calvez, M. D. Dawson, “Microlensed microchip VECSEL,” Opt. Express 15, 9341–9346 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, D. Romanini, “Single–frequency operation of external–cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15, 9403–9417 (2007).
[CrossRef] [PubMed]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12452 (2007).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17, 9503–9508 (2009).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, “Multiwatt–power highly–coherent compact single–frequency tunable vertical–external–cavity–surface–emitting–semiconductor–laser,” Opt. Express 18, 14627–14636 (2010).
[CrossRef] [PubMed]

M. M. Vogel, M. Rumpel, B. Weichelt, A. Voss, M. Haefner, C. Pruss, W. Osten, M. A. Ahmed, T. Graf, “Single-layer resonant-waveguide grating for polarization and wavelength selection in Yb:YAG thin-disk lasers,” Opt. Express 20, 4024–4031 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett 101, 073901 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. TÜnnermann, R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[CrossRef] [PubMed]

Proc. SPIE

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, E. A. Cerda-Méndez, “2–2.7 μm single frequency tunable Sb–based lasers operating in CW @ RT: Microcavity and external-cavity VCSELs, DFB,” Proc. SPIE 6184, 61840N (2006).
[CrossRef]

M. Myara, M. Sellahi, A. Laurain, A. Garnache, A. Michon, I. Sagnes, “Noise properties of NIR and MIR VECSELs,” Proc. SPIE 8606, 86060Q (2013).
[CrossRef]

Other

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

The free-software used for the calculation can be downloaded at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe .

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic representation of the PCM structure investigated in this study. The arrows represent path of optical waves. (b) Effective refractive index of the PC artificial material made of a Si3N4 layer perforated by a 2D periodic array of air holes placed on a square lattice. For circular holes (blue curve) and for elliptical holes (red and green curves).

Fig. 2
Fig. 2

Simulated amplitude of the transverse E-field in the PCM (at λ = 1.01μm Spacer thickness=142nm, a=280nm): (a) Resonant PCM structure, PC-layer thickness=280nm. (b) Anti-Resonant PCM structure, PC-layer thickness=140nm

Fig. 3
Fig. 3

(a) Phase of the reflected plane waves by PCM as a function of the filling factor at work wavelength λ0 = 1010nm ± 10nm (PC thickness=280nm, Spacer thickness=142nm, a=280nm). (b) Corresponding PCM reflectivity, black arrows show the optical resonance effect moving when the wavelength changes.

Fig. 4
Fig. 4

(a) Phase of the reflected plane waves by PCM as a function of the filling factor at work wavelength λ0 = 1010nm ± 10nm (PC thickness=840nm, Spacer thickness=142nm, a=280nm). (b) see caption in 3.

Fig. 5
Fig. 5

(a) Schematic of the optical resonator: based on the gain mirror and PCM with spherical phase-difference transfer function. (b) Schematic of the equivalent intrinsically single mode optical resonator. (c) Classic multimode plano-concave optical resonator; Intensity profile of the 2 first Lagueurre-Gauss resonator modes.

Fig. 6
Fig. 6

(a) Filling factor profile needed to realize the spherical phase function as a function the radial distance from PCM center; the simulated resulting phase difference profile at work wavelength λ0 = 1010nm ± 10nm. (b) The resulting PCM reflectivity at work wavelength λ0 = 1010nm ± 10nm. (PC thickness=280nm, Spacer thickness=142nm, a=280nm)

Fig. 7
Fig. 7

Simulated resulting phase difference profile at work wavelength λ0 = 1010nm using elliptical holes (fx = 0.6 and varying fy). PC thickness=280nm, Spacer thickness=142nm, a=280nm. TE / TM-polarized waves experience different radius of curvature.

Fig. 8
Fig. 8

(a) Evolution of the TEM00’s waist on the PCM as a function of the cavity length at two lasing wavelengths λ = 1010nm and λ = 1000nm. Dashed horizontal line shows the waist size corresponding to the 99% aperture-criterion due to the finite diameter of the PCM, the gray-shaded region is a forbidden stability region. P1 (resp.P2) shows the case where the 99% criterion is (resp. is not) fulfilled. (b) Evolution of the PCM radius of curvature as a function of the wavelength; Beam radius of the fundamental cavity mode for Lc, dashed horizontal line shows the same 99% criterion as in (a), it defines the cavity stability spectral bandwidth, this bandwidth can be reduced by increasing Lc.

Fig. 9
Fig. 9

(a) Technological process of fabrication of the PCM. (b) Reflectivity of the fabricated DBR structure holding the PC, the black arrow shows the optical resonance in the structure.

Fig. 10
Fig. 10

(a) SEM top view of one fabricated PCM with 2 filling factors (f1 = 0.3, f2 = 0.6). (b) Optical microscope image of the PCM shown in (a). (c) Optical microscope image of the fabricated PCM with parabolic phase profile.

Fig. 11
Fig. 11

Schematic of PCM based VECSEL design.

Fig. 12
Fig. 12

(a) Far field phase map recorded with a wavefront sensor (field curvature Zernike term removed); intensity profile recorded with a beam profiler, the beam intensity profile is perfectly fitted by a gaussian shape (1.2% rms). (b) Laser spectrum recorded with an optical spectrum analyzer (6 GHz resolution). Solid vertical lines show the longitudinal mode positions.

Fig. 13
Fig. 13

PCM-based and thermal lens-based cavity stability: experimental and calculated Gaussian waist W0 (@1/e2) on the VECSEL gain mirror varying with Lc. Green shaded region: validity zone of the thermal lens-based stability due to the finite size of the thermal lens. Gray-shaded region see caption of Fig. 8

Fig. 14
Fig. 14

Measured and simulated relative intensity noise curves of the PCM-based VECSEL for cavity length Lc = 1.8mm and two pumping rates η = 1.1, η = 2. The simulation only takes into account quantum noise forces on carriers and photons. Left axis: current fluctuations spectral density for η = 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a λ 0 / n Spacer
1 q ( z ) = 1 R ( Z ) j λ π W 2 ( z )
q = j L c R c L c 2
V π σ λ d 0 / L c < 2
20 n m a f 1 50 n m a
f r = 1 2 π γ . A . ( η 1 ) .

Metrics