Abstract

A fiber surface grating (FSG) formed from a photosensitive liquid crystal hybrid (PLCH) film overlaid on a side-polished fiber (SPF) is studied and has been experimentally shown to be able to function as an all-optically reconfigurable and tunable fiber device. The device is all-optically configured to be a short period fiber surface grating (SPFSG) when a phase mask is used, and then reconfigured to be a long period FSG (LPFSG) when an amplitude mask is used. Experimental results show that both the short and long period FSGs can function as an optically tunable band-rejection filter and have different performances with different pump power and different configured period of the FSG. When configured as a SPFSG, the device can achieve a high extinction ratio (ER) of 21.5dB and a wideband tunability of 31nm are achieved. When configured as a LPFSG, the device can achieve an even higher ER of 23.4dB and a wider tunable bandwidth of 60nm. Besides these tunable performances of the device, its full width at half maximum (FWHM) can also be optically tuned. The reconfigurability and tunability of the fiber device open up possibilities for other all-optically programmable and tunable fiber devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
    [CrossRef] [PubMed]
  2. G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
    [CrossRef]
  3. B. Lee, “Review of the present status of optical fiber sensor,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [CrossRef]
  4. Y. Lai, W. Zhang, L. Zhang, J. A. R. Williams, I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28(24), 2446–2448 (2003).
    [CrossRef] [PubMed]
  5. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
    [CrossRef]
  6. G. A. Ball, W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17(6), 420–422 (1992).
    [CrossRef] [PubMed]
  7. J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997).
    [CrossRef]
  8. R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, J. Ripmeester, T. Siebert, A. Stolow, “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Appl. Opt. 44(33), 7039–7042 (2005).
    [CrossRef] [PubMed]
  9. J. H. Liou, T. H. Chang, T. Lin, C. P. Yu, “Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers,” Opt. Express 19(7), 6756–6761 (2011).
    [CrossRef] [PubMed]
  10. M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
    [CrossRef]
  11. Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
    [CrossRef]
  12. Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
    [CrossRef]
  13. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
    [CrossRef]
  14. V. K. S. Hsiao, C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [CrossRef] [PubMed]
  15. W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
    [CrossRef]
  16. J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
    [CrossRef]
  17. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
    [CrossRef] [PubMed]
  18. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
    [CrossRef] [PubMed]
  19. Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
    [CrossRef] [PubMed]
  20. K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
    [CrossRef]
  21. H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
    [CrossRef]
  22. J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
    [CrossRef]
  23. Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
    [CrossRef]
  24. J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
    [CrossRef]
  25. Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012).
    [CrossRef] [PubMed]
  26. H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
    [CrossRef] [PubMed]
  27. A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).
  28. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  29. D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999).
    [CrossRef]
  30. C. P. Pollock and M. Lipson, Integrated Photonics (Boston & Dordrecht & London, 1997) Chap. 11.
  31. M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
    [CrossRef]

2013 (2)

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

2012 (3)

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012).
[CrossRef] [PubMed]

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

2011 (6)

H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

J. H. Liou, T. H. Chang, T. Lin, C. P. Yu, “Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers,” Opt. Express 19(7), 6756–6761 (2011).
[CrossRef] [PubMed]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

2010 (4)

K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
[CrossRef]

H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
[CrossRef]

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

2009 (3)

2008 (2)

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

V. K. S. Hsiao, C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

2003 (2)

1999 (2)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999).
[CrossRef]

1997 (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997).
[CrossRef]

1996 (1)

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

1992 (1)

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Ahn, T.

H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
[CrossRef]

Archambault, J.

J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997).
[CrossRef]

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

Ball, G. A.

Bartkiewicz, S.

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

Bennion, I.

Buosciolo, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Chang, T. H.

Cheben, P.

Chen, R.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Chen, Z.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012).
[CrossRef] [PubMed]

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
[CrossRef] [PubMed]

Cheng, M.

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

Chu, C.

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

Consales, M.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Crescitelli, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Cusano, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Desjardins, P.

Du, Y.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Eggleton, B. J.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Erdogan, T.

D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Fan, R.

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Fu, W.

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Galewski, Z.

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

Giordano, M.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Gordon, J. D.

Grubb, S. G.

J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997).
[CrossRef]

Gutolo, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Hale, A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Han, Y. G.

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Hsiao, V. K. S.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012).
[CrossRef] [PubMed]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
[CrossRef] [PubMed]

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

V. K. S. Hsiao, C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
[CrossRef] [PubMed]

Huang, T. J.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Ikeda, T.

H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

Ivanov, M.

Jang, H. S.

Janz, S.

Jiang, S. J.

Juluri, B. K.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

Kim, H.

H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
[CrossRef]

Kim, H. K.

K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
[CrossRef]

Kim, J. P.

Kim, K. T.

K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
[CrossRef]

Ko, C. Y.

Kwon, O. J.

Lai, Y.

Lausten, R.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensor,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Lee, K. S.

Li, H.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Li, S.

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

Li, X.

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

Li, Z.

Lin, T.

Liou, J. H.

Liu, W.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Lowder, T. L.

Luo, Y.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Ming, H.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Moon, N. I.

K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
[CrossRef]

Morey, W. W.

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

Paladino, D.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Park, K. N.

Peng, G.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Peng, P. C.

Quero, G.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

Ripmeester, J.

Rochon, P.

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Shin, W.

H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
[CrossRef]

Siebert, T.

Sim, S. J.

Sobolewska, A.

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

Stegall, D. B.

D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999).
[CrossRef]

Stolow, A.

Strasser, T. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Tang, J.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
[CrossRef] [PubMed]

Tang, J. Y.

Wang, H.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

Williams, J. A. R.

Windeler, R. S.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Wu, M.

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Xiao, Y.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Yan, Q.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

Yu, C. P.

Yu, H.

H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

Yu, J.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Zawada, J.

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

Zhai, Y.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Zhang, J.

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[CrossRef] [PubMed]

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Zhang, L.

Zhang, Q.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Zhang, W.

Zhao, F.

Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012).
[CrossRef] [PubMed]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

Zheng, R.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Zheng, Y. B.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Zhong, Y.

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

Zhu, B.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Zou, G.

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Adv. Mater. (2)

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Electron. Lett. (1)

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010).
[CrossRef]

D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997).
[CrossRef]

J. Phys. Chem. (1)

A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).

Meas. Sci. Technol. (1)

J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012).
[CrossRef]

Opt. Commun. (1)

Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensor,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (3)

J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010).
[CrossRef]

Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011).
[CrossRef]

J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012).
[CrossRef]

Sens. and Act. A: Physical (1)

K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010).
[CrossRef]

Sens. and Act. B: Chem. (2)

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011).
[CrossRef]

W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011).
[CrossRef]

Other (1)

C. P. Pollock and M. Lipson, Integrated Photonics (Boston & Dordrecht & London, 1997) Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical micrographs of three regions of a fabricated SPF: (a) left transitional region, (b) flat region and (c) right transitional region. Positions of the three regions are indicated by the blue arrows in Fig. 1(d), which is a plot of residual cladding thickness along the SPF. Figure 1(e) is the SEM micrograph of the surface of the SPF flat region, showing 1~2μm roughness of the surface.

Fig. 2
Fig. 2

Microscopic top views of the SPF flat region: (a) before coating the PLCH film; (b) after coating the PLCH film; (c) with the PLCH films pre-illuminated by a 405nm wavelength laser for 2 minutes and settled down for half an hour.

Fig. 3
Fig. 3

(a) Schematic diagram of experimental setup for testing the performance of an optically reconfigurable and tunable SPF-based surface grating; (b) microscopic graph of a phase mask under a 60X objective lens, showing the period is measured to be of 528nm; (c) microscopic graph of an amplitude mask under a 4X objective lens showing the mask period is measured to be of 500μm.

Fig. 4
Fig. 4

Schematic diagrams showing formation of surface gratings on a SPF. (a) Photosensitive mechanism of PLCH; (b) Formation of a short period FSG on SPF with a phase mask; (c) Formation of a long period FSG on SPF with an amplitude mask; (d) Micrograph showing the interference pattern of ~528nm period, which is formed by the interference between −1st,0th and 1st order diffractions beams after 405nm laser beam passed through the phase mask as illustrated in (b); (e) Micrograph showing the long period grating of 500μm period in a ~30μm thick PLCH film, which is produced by 405nm wavelength pump light illumination through the amplitude mask shown in (c).

Fig. 5
Fig. 5

Normalized transmission (a) and reflection (b) spectrums of the PLCH-coated SPF. The transmission spectrums under different pump powers are shown in (a), where the power of the pump light is changed from 0mW(black solid), to 9.6mW(red dash), 14.4mW(blue dot), 26.3mW(dark cyan dash dot), 33mW(magenta dash dot dot),45.3mW(dark yellow short dash), 62.9mW(navy short dot), and back to 0mW(brown short dash dot). The spectrums of reflection power shown in (b) are measured without (black solid) and with (red dash) illumination of the pump light at 40.1mW, and the spectrum of normalized reflection associated with the right vertical axis in (b) is shown by blue solid line in (b).

Fig. 6
Fig. 6

Variations of resonant wavelength (RW) in (a), and extinction ratio (ER) and full width at half maximum (FHWM) in (b) with increase of the pump power illuminating on the PLCH-coated SPF.

Fig. 7
Fig. 7

(a) Transmission spectrums of PLCH-coated SPF upon illumination from pump light through an amplitude mask with different pump powers. The pump power is successively 0mW(black solid), 2.8mW(red dash), 8.7mW(blue dot), 11.5mW(dark cyan dash dot), 15.5mW(meganta dash dot dot), 21.1mW (dark yellow short dash), and 0mW(navy short dot). (b) Reflection spectrums without (black solid) and with pump light power at 8.7mW (red dash), and the spectrum of normalized reflection (blue dash) calculated from the above two spectrums of reflection power.

Fig. 8
Fig. 8

Variation of resonant wavelength in (a), and variations of extinction ratio and FWHM in (b) of the long period FSG with the pump power increasing from 2.7mW to 21.1mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ r = Λ ( n P L C H m n c o r e )

Metrics