Abstract

Heavily-doped strained germanium (Ge) can emit light efficiently thanks to its pseudo direct band gap characteristic. This makes Ge a good candidate for on-chip monolithic light sources in silicon (Si) photonics systems. We propose fin-shaped Ge-Si heterojunction light-emitting diode (LED) with metal gates, which can enhance light emission by coupling with surface plasmon resonant modes and modulate light emission from the LED. We verify these two aspects through numerical analysis and device simulations. We develop the method to find the optimal device structure and specific device dimensions to maximize the spontaneous emission rate enhancement. Also we find that the LED can be modulated by a gate voltage bias.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
    [CrossRef]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012).
    [CrossRef]
  4. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley, 2008).
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
    [CrossRef] [PubMed]
  7. J. Michel, J. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  8. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  10. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [CrossRef]
  11. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [CrossRef] [PubMed]
  12. C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
    [CrossRef]
  13. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  14. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
    [CrossRef] [PubMed]
  15. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
    [CrossRef] [PubMed]
  16. F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
    [CrossRef] [PubMed]
  17. J. Liu, X. Sun, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for integrated photonics,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.
  18. S. M. Sze and K. Kwok, Physics of Semiconductor Devices, 3rd ed. (John Wiley, 2007).
  19. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
    [CrossRef]
  20. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  21. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  23. K. Nozaki, S. Kita, T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  24. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  25. M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
    [CrossRef]
  26. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  27. H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]
  28. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  29. K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
    [CrossRef]
  30. I. Jeoug, C. Kim, and Y. J. Park, “Numerical analysis of surface-plasmon-enhanced light emission in fin silicon light-emitting diode,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.
  31. M. S. Tomas, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
    [CrossRef] [PubMed]
  32. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B 4(4), 481–489 (1987).
    [CrossRef]
  33. J. Kwon, I. Jeong, S. Choi, and Y. J. Park, “An embedded modulation of GeSi fin LED – A simulation study,” presented at the 10th International Workshop on Compact Modeling, Yokohama, Japan, 22 Jan. 2013.
  34. S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
    [CrossRef]
  35. G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
    [CrossRef]
  36. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).
  37. S. W. Chang, C. Y. Ni, S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
    [CrossRef] [PubMed]

2013 (1)

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

2012 (3)

Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012).
[CrossRef]

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

2010 (5)

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

2009 (5)

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[CrossRef]

F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
[CrossRef] [PubMed]

X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (5)

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

2005 (2)

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

1995 (1)

M. S. Tomas, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[CrossRef] [PubMed]

1987 (1)

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Anger, P.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Baba, T.

Bessette, J. T.

Bharadwaj, P.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Bowers, J. E.

Cai, Y.

Camacho-Aguilera, R. E.

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Chan, S.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Chang, S. W.

Charminati, R.

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Chen, C.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Chen, Y.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Cheng, S. L.

Cheng, T.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Choi, B. J.

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Choi, G.

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Chrastina, D.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Chuang, S. L.

Cohen, O.

Crespi, V. H.

F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
[CrossRef] [PubMed]

Faist, J.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Fang, A. W.

Fang, Z.

Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Franck, T.

Freude, W.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Frigerio, J.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Geiger, R.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Greffet, J.

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Han, J. H.

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

Hodge, D.

Hwang, C. S.

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[CrossRef]

Isella, G.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Jan, S.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Joulain, K.

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Keil, U.

Kim, G. H.

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

Kim, S. K.

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Kimerling, L. C.

Kita, S.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Koch, T. L.

Koos, C.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Lee, S. Y.

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Liao, L.

Liu, A.

Liu, C. W.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Liu, J.

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[CrossRef]

Lu, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Michel, J.

Minamisawa, R. A.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Morse, M.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Mulet, J.

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ni, C. Y.

Nien, Y.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nishi, Y.

Novotny, L.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Nozaki, K.

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Pan, D.

Paniccia, M. J.

Park, H.

Park, W. Y.

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Patel, N.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Romagnoli, M.

Rubin, D.

Samara-Rubio, D.

Saraswat, K.

Schaadt, D. M.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schiefler, G.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Seo, M.

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

Shambat, G.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sigg, H.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Sipe, J. E.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Spolenak, R.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Süess, M. J.

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

Sun, X.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Tillack, B.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Tomas, M. S.

M. S. Tomas, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[CrossRef] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[CrossRef]

Vuckovic, J.

Wang, X.

Yamamoto, Y.

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yu, H. Y.

Zhang, F.

F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
[CrossRef] [PubMed]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Zhang, P.

F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
[CrossRef] [PubMed]

Zhao, C. Z.

Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Chem. Mater. (1)

S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

ISRN Opt. (1)

Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012).
[CrossRef]

J. Electrochem. Soc. (1)

G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics (4)

M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

M. S. Tomas, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009).
[CrossRef] [PubMed]

Proc. IEEE (1)

L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[CrossRef]

Thin Solid Films (1)

C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012).
[CrossRef]

Other (7)

J. Kwon, I. Jeong, S. Choi, and Y. J. Park, “An embedded modulation of GeSi fin LED – A simulation study,” presented at the 10th International Workshop on Compact Modeling, Yokohama, Japan, 22 Jan. 2013.

I. Jeoug, C. Kim, and Y. J. Park, “Numerical analysis of surface-plasmon-enhanced light emission in fin silicon light-emitting diode,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.

L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

J. Liu, X. Sun, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for integrated photonics,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.

S. M. Sze and K. Kwok, Physics of Semiconductor Devices, 3rd ed. (John Wiley, 2007).

G. T. Reed, Silicon Photonics: The State of the Art (John Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy band structure of Ge under straining [11]. (a) Energy band structure of unstrained bulk Ge. The band gap is 0.664 eV. It is an indirect band gap. The energy difference between the Γ-valley and the L-valley is relatively small (0.136 eV). By addressing tensile strain, Ge can be more direct-band-gap-like due to lowering of the Γ-valley. The L-valley also becomes lower, yet slower than the Γ-valley lowering. (b) 2% strain makes Ge a true direct band gap material by lowering the Γ-valley down to the L-valley level. Valence band structure also changes slightly. The band gap energy becomes much smaller. (0.5 eV) (c) Recombination processes. γr is the radiative recombination rate and γnr is the nonradiative recombination rate. Each lifetime (τnr and τr) is the reciprocal of each rate. Internal quantum efficiency q is the ratio of γr to the total recombination rate, γr + γnr.

Fig. 2
Fig. 2

(a) Structure of fin Ge-Si LED. Metal gates on both sides can enhance radiative recombination rate in the Ge region and modulate light. Diode forward bias is Vd and gate bias on both metal gates is Vg. (b) Recombination rate in the Ge region. Some of electron-hole pairs are eliminated by recombination and emit photons. Light emission rate is proportional to q. (c) Energy band diagram when Vd is applied. If we apply Vg, the whole energy band becomes lower, presenting an energy barrier for holes.

Fig. 3
Fig. 3

(a) Quantum efficiency q enhanced by the enhancement γr of for various intrinsic q0. E is the enhancement factor, i.e. the Purcell factor. (b) Multilayer approximation scheme. An emitter in Ge layer is modeled as an oscillating dipole delta source.

Fig. 4
Fig. 4

(a) E vs. (tm, tGe) for Au gate. The dashed line and the o-point will be referred in other figures. (b) q vs. (tm, tGe) enhanced by E in Fig. 4(a) with q0 = 5%. (c) The total emission power vs. (tm, tGe) for several q0 with Au gate. The optimal device dimensions maximizing the total emission are indicated for each q0 (x-points). (d) Emitter position in the Ge layer vs. E for tm = 2 nm and tGe = 10 nm with Au gate. It is almost invariant as the emitter position is varied. It is similar for other device dimensions (not shown). E at the center of the fin is also indicated in Fig. 4(a) (o-point). (e) Total emission power for different metal gates. (q0 = 5%)

Fig. 5
Fig. 5

(a) Top: LPDOS density spectrum per in-plane wave vector. Metal gate gives rise to surface plasmonic mode (tm = 0, 1.5, 3, 5, 10 nm, tGe = 30 nm). Bottom: dispersion relation when tm = 3 nm. Peaks in the LPDOS density coincides with the propagation modes. k|| is normalized to the magnitude of k in the oxide. (b) E vs. tm with tGe = 30 nm. Various tm points in Fig. 5(a) are indicated as o-points (c) E-field profile (Ey) of the even surface plasmonic mode when tm = 3 nm and tGe = 30 nm.

Fig. 6
Fig. 6

Electrical simulation results. The oxide thickness is all 5nm as in Fig. 2(a) except in case of (c). (a) Current normalized to gate-off current vs. positive gate bias. p-i-n diode has better gate controllability then p-n diode. (b) As tox decreases, the gate controllability improves. (tGe = 90 nm) (c) Thinner tGe has better gate modulation capability. (d) Transient responses of pulse input. ((b)~(d) are results for for p-i-n diode.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

q(E, q 0 )= r r nr = Eq 0 1+q 0 (E-1) .
γ r = 2 ω π 3 ε 0 | p | 2 ρ ,
ρ = ω π c 2 T r ( Im { G } ) ,
× × G ε ω 2 c 2 G = I δ ( r r ' ) ,
ρ = ω 4 π 2 c 2 0 d k Re { ( k k η 1 S ) + ( k k k 2 η 2 P ) + ( k 3 k 2 k η 1 P ) } .
η 1 P = ( 1 + R ) ( 1 + R ) 1 R R , η 2 P = ( 1 R ) ( 1 R ) 1 R R , η 1 S = ( 1 + R ) ( 1 + R ) 1 R R .

Metrics