Abstract

We investigate the optoelectronic properties of a carbon nanotube (CNT)–metal heterostructure in the terahertz range. On the basis of terahertz time-domain spectroscopy characterization of a double-walled CNT (DWNT) film, we present and analyze the photocurrent measurement for a DWNT–nickel heterojunction illuminated by continuous-wave terahertz radiation. A significant current across the junction directly induced by terahertz excitation is observed and a negative photoconductivity behavior is found to occur in the device. The photocurrent shows a linear response to the bias voltage and the illumination power within the examined range. These phenomena support the feasibility of using CNT–metal heterojunctions as novel terahertz detectors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  2. W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  3. F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
    [CrossRef]
  4. Y. Wang, Z. Zhao, Z. Chen, K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37, 4395–4397 (2012).
    [CrossRef] [PubMed]
  5. R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
    [CrossRef]
  6. S. Boppel, A. Lisauskas, A. Max, V. Krozer, H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
    [CrossRef] [PubMed]
  7. Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
    [CrossRef]
  8. M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
    [CrossRef]
  9. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
    [CrossRef] [PubMed]
  10. P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
    [CrossRef]
  11. J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
    [CrossRef]
  12. J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
    [CrossRef] [PubMed]
  13. S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006).
    [CrossRef]
  14. D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
    [CrossRef]
  15. G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
    [CrossRef]
  16. J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
    [CrossRef]
  17. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
    [CrossRef] [PubMed]
  18. W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
    [CrossRef]
  19. S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
    [CrossRef]
  20. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562–1571 (2001).
    [CrossRef]
  21. I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
    [CrossRef] [PubMed]
  22. S. Maine, C. Koechlin, S. Rennesson, J. Jaeck, S. Salort, B. Chassagne, F. Pardo, J.-L. Pelouard, R. Haïar, “Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range,” Appl. Opt. 51, 3031–3035 (2012).
    [CrossRef] [PubMed]
  23. I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
    [CrossRef]
  24. C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Opt. Express 20, A441–A451 (2012).
    [CrossRef] [PubMed]
  25. T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, Z. V. Vardeny, “Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets,” Opt. Mater. Express 2, 782–788 (2012).
    [CrossRef]
  26. I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003).
    [CrossRef]
  27. J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
    [CrossRef]

2013 (2)

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
[CrossRef]

2012 (9)

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

S. Boppel, A. Lisauskas, A. Max, V. Krozer, H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
[CrossRef] [PubMed]

T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, Z. V. Vardeny, “Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets,” Opt. Mater. Express 2, 782–788 (2012).
[CrossRef]

C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Opt. Express 20, A441–A451 (2012).
[CrossRef] [PubMed]

S. Maine, C. Koechlin, S. Rennesson, J. Jaeck, S. Salort, B. Chassagne, F. Pardo, J.-L. Pelouard, R. Haïar, “Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range,” Appl. Opt. 51, 3031–3035 (2012).
[CrossRef] [PubMed]

Y. Wang, Z. Zhao, Z. Chen, K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37, 4395–4397 (2012).
[CrossRef] [PubMed]

2010 (2)

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

2009 (1)

Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
[CrossRef]

2008 (1)

P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
[CrossRef]

2007 (5)

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
[CrossRef] [PubMed]

2006 (5)

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006).
[CrossRef]

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

2003 (1)

I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003).
[CrossRef]

2001 (1)

An, K. H.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Avouris, P.

P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
[CrossRef]

Baraniuk, R. G.

Baughman, R. H.

Beltram, F.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Bobrinetskiy, I.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Boppel, S.

Cao, A.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

Cathelin, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Chang, C.-H.

Charayev, I.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Chassagne, B.

Chen, B.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Chen, Z.

Coquillat, D.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Deibel, J.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Dorney, T. D.

Ercolani, D.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Euler, W. B.

I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003).
[CrossRef]

Faist, J.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Fang, S.

Fedorov, G.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Ferrari, A. C.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Finkel, M.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Föster, W.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Freitag, M.

P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
[CrossRef]

Freysz, E.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Gao, W.

W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
[CrossRef]

Gayduchenko, I.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Goltsman, G.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Grzyb, J.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Gu, Z.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

Hadi, R. A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Haïar, R.

Hsu, W.-K.

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

Ibragimov, R.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Ishibashi, K.

Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
[CrossRef]

Jaeck, J.

Jia, Y.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Kaiser, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Kamaraju, N.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Kang, C.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Kang, K.

Kardakova, A.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Kawano, Y.

Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
[CrossRef]

Keller, H. M.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Klapwijk, T. M.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Knap, W.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Koch, M.

Koechlin, C.

Krozer, V.

Kumar, S.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Lee, Y. H.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Levitsky, I. A.

I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003).
[CrossRef]

Li, Y.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Lien, D.-H.

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

Lima, M. D.

Lin, M.-H.

Lisauskas, A.

Liu, S.

Liu, W.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Liu, X.

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Loutfy, R. O.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Lu, S.

S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006).
[CrossRef]

Luo, J.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Maeng, I.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Maine, S.

Max, A.

Mittleman, D. M.

Moravsky, A.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Morozov, S.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Nahata, A.

Nguyen, T. D.

Oh, S. J.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Pan, C.-L.

Panchapakesan, B.

S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006).
[CrossRef]

Pardo, F.

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Pelouard, J.-L.

Perebeinos, V.

P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
[CrossRef]

Pfeiffer, U.R.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Polini, M.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Presniakov, M.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Pupeza, I.

Rennesson, S.

Romeo, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Roskos, H. G.

Salort, S.

Scalari, G.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Sherry, H.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Shu, Q.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

Sizov, F.

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

Son, J.-H.

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

Sood, A. K.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Sorba, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Sun, H.

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Sun, J.-L.

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

Tai, N.-H.

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

Tondusson, M.

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Tredicucci, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Tsai, C.-H.

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

Uchida, T.

Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
[CrossRef]

Vardeny, Z. V.

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Viti, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Vitiello, M. S.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Voronov, B. M.

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

Wada, O.

Wang, K.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

Wang, Y.

W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
[CrossRef]

Y. Wang, Z. Zhao, Z. Chen, K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37, 4395–4397 (2012).
[CrossRef] [PubMed]

Wang, Z.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Wei, B.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Wei, J.

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Wilk, R.

Wu, D.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Wu, D.-H.

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Wu, N.-L.

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Xu, D.

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Yang, C.-S.

Yu, P.

Zan, H.-W.

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

Zhang, G.

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

Zhao, Y.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

Zhao, Z.

W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
[CrossRef]

Y. Wang, Z. Zhao, Z. Chen, K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37, 4395–4397 (2012).
[CrossRef] [PubMed]

Zheng, M.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Zhu, H.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Zhu, J.-L.

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Zhu, Y.

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Zhuang, D.

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

Adv. Mater. (2)

D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006).
[CrossRef]

J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007).
[CrossRef]

I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003).
[CrossRef]

J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012).
[CrossRef]

G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013).
[CrossRef]

J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006).
[CrossRef]

Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009).
[CrossRef]

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012).
[CrossRef]

Eur. J. Inorg. Chem. (1)

S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010).
[CrossRef]

IEEE J. Solid-State Circuit (1)

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006).
[CrossRef]

Nat. Mater. (1)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

Proc. SPIE (1)

W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Small (1)

J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram (a) and optical photograph (b) of a CNT–metal HJ device. The green dashed lines in (a) and (b) indicate the junction interface irradiated by terahertz radiation. The orange dotted frame and the red solid circle in (b) indicate the contour of the Ni foil and the terahertz spot position, respectively. (c) SEM micrograph of the DWNT film. (d) Single-layered DWNT film adhering to a Si wafer. The lower part shows an AFM image of a small area near the film edge. (e) Height profile along the blue solid line marked in the AFM image of (d).

Fig. 2
Fig. 2

Terahertz spectra of DWNT film. (a) Transmission amplitude spectrum. Inset: temporal waveforms of the terahertz pulses transmitted through the Si substrate (solid curve) and the DWNT film on Si substrate (dashed curve). (b) Refractive index (open circles) and absorption coefficient (open squares) extracted from the complex transfer function, where the dashed and solid curves are their fits to the Drude–Lorentz model, respectively.

Fig. 3
Fig. 3

I–V characteristics of the DWNT–Ni HJ. The solid and dashed lines denote the measurement results without and with terahertz illumination (Id and Ip), respectively, and the dotted line denotes their difference ΔI = IpId.

Fig. 4
Fig. 4

Temporal photocurrent response of the DWNT–Ni HJ with terahertz irradiation on and off under zero (a) and 100 mV (b) bias voltages. (c) and (d) are fits (dashed lines) of the falling and rising edges (open circles) of the curve in (b), respectively.

Fig. 5
Fig. 5

Terahertz induced photocurrent as a function of incident power. The filled squares with error bars correspond to the experimental data and the solid line is a linear fit.

Tables (1)

Tables Icon

Table 1 Fitted parameters for the Drude–Lorentz oscillator model of the dielectric function.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) t 02 ( ω ) t 21 ( ω ) exp { j [ n ˜ ( ω ) 1 ] ω d / c } t 01 ( ω ) { 1 + r 02 ( ω ) r 21 ( ω ) exp [ 2 j n ˜ ( ω ) ω d / c ] } ,
ε ˜ ( ω ) = ε ω p 2 ω 2 + j Γ ω + i ω p i 2 ω 0 i 2 ω 2 j Γ i ω ,
ε ˜ ( ω ) = ε + j σ ˜ ( ω ) ω ε 0 ,
I ( t ) = I 0 + I 1 exp ( t τ 1 ) + I 2 exp ( t τ 2 ) ,

Metrics