Abstract

The use of any optical material is limited at high fluences by laser-induced damage to optical surfaces. In many optical materials, the damage results from a series of sources which initiate at a large range of fluences and intensities. Much progress has been made recently eliminating silica surface damage due to fracture-related precursors at relatively low fluences (i.e., less than 10 J/cm2, when damaged by 355 nm, 5 ns pulses). At higher fluence, most materials are limited by other classes of damage precursors which exhibit a strong threshold behavior and high areal density (>105 cm−2); we refer to these collectively as high fluence precursors. Here, we show that a variety of nominally transparent materials in trace quantities can act as surface damage precursors. We show that by minimizing the presence of precipitates during chemical processing, we can reduce damage density in silica at high fluence by more than 100 times while shifting the fluence onset of observable damage by about 7 J/cm2. A better understanding of the complex chemistry and physics of cleaning, rinsing, and drying will likely lead to even further improvements in the damage performance of silica and potentially other optical materials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002).
    [CrossRef]
  2. G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013).
    [CrossRef] [PubMed]
  3. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
    [CrossRef]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [CrossRef]
  5. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  6. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
    [CrossRef]
  7. A. V. Smith, B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [CrossRef] [PubMed]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [CrossRef]
  9. N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [CrossRef]
  10. C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [CrossRef]
  11. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [CrossRef]
  12. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [CrossRef] [PubMed]
  13. P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” US8313662 (2012).
  14. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [CrossRef] [PubMed]
  15. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [CrossRef] [PubMed]
  16. R. A. Negres, M. D. Feit, S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
    [CrossRef] [PubMed]
  17. C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
    [CrossRef] [PubMed]
  18. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [CrossRef] [PubMed]
  19. R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  20. R. N. Raman, M. J. Matthews, J. J. Adams, S. G. Demos, “Monitoring annealing via CO(2) laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
    [CrossRef] [PubMed]
  21. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “Co2-laser polishing for reduction of 351-nm surface damage initiation in fused silica,” in Laser-Induced Damage in Optical Materials: 2001 Proceedings, G. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2002), pp. 34–39.
  22. J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
    [CrossRef]
  23. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [CrossRef] [PubMed]
  24. X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized hf etch process,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, J. Shao, T. Jitsuno, and W. Rudolph, eds. (2013).
  25. X. Gao, G. Feng, J. Han, L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20(20), 22095–22101 (2012).
    [CrossRef] [PubMed]
  26. X. Gao, G. Feng, J. Han, N. Chen, C. Tang, S. Zhou, “Investigation of laser-induced damage by nanoabsorbers at the surface of fused silica,” Appl. Opt. 51(13), 2463–2468 (2012).
    [CrossRef] [PubMed]
  27. K. Bien-Aimé, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Néauport, I. Tovena-Pecault, “Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm,” Opt. Express 17(21), 18703–18713 (2009).
    [CrossRef] [PubMed]
  28. K. Bien-Aimé, J. Néauport, I. Tovena-Pecault, E. Fargin, C. Labrugère, C. Belin, M. Couzi, “Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant,” Appl. Opt. 48(12), 2228–2235 (2009).
    [CrossRef] [PubMed]
  29. C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
    [CrossRef]
  30. C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
    [CrossRef]
  31. N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
    [CrossRef]
  32. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
    [CrossRef]
  33. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
    [CrossRef]
  34. A. Torres, V. Courtney, A. M. Caen, F. Vietor, A. Moran, and H. L. Kelly, “Annual water quality report 2012” (San Francisco Public Utilities Commission, San Francisco, 2012).

2014 (1)

2013 (2)

G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013).
[CrossRef] [PubMed]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

2012 (5)

2011 (2)

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

2010 (5)

2009 (5)

K. Bien-Aimé, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Néauport, I. Tovena-Pecault, “Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm,” Opt. Express 17(21), 18703–18713 (2009).
[CrossRef] [PubMed]

K. Bien-Aimé, J. Néauport, I. Tovena-Pecault, E. Fargin, C. Labrugère, C. Belin, M. Couzi, “Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant,” Appl. Opt. 48(12), 2228–2235 (2009).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (2)

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

2005 (1)

2002 (1)

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002).
[CrossRef]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

1982 (1)

Abdulla, G. M.

Adams, J. J.

R. N. Raman, M. J. Matthews, J. J. Adams, S. G. Demos, “Monitoring annealing via CO(2) laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
[CrossRef] [PubMed]

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Auerbach, J. M.

Belin, C.

Bercegol, H.

Bien-Aimé, K.

Birolleau, J. C.

Bisson, S. E.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Bowers, M. W.

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Bude, J.

N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[CrossRef]

J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Bude, J. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Carr, C. W.

N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[CrossRef]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Chen, N.

Couzi, M.

Cross, D. A.

DeMange, P.

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

Demos, S. G.

Dixit, S. N.

Do, B. T.

Donohue, E. E.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Elhadj, S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Erbert, G. V.

Fargin, E.

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. D. Feit, S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Feng, G.

Gallais, L.

Gao, X.

Glebov, L. B.

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002).
[CrossRef]

Grua, P.

Guss, G.

J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Hackel, R. P.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Han, J.

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Hollingsworth, W. G.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Hu, G.

Jancaitis, K. S.

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Labrugère, C.

Lamaignere, L.

Laurence, T. A.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Li, D.

Liao, Z. M.

Liu, X.

Lowdermilk, W. H.

Ly, S.

Manes, K. R.

Marshall, C. D.

Matthews, M.

J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Matthews, M. J.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

R. N. Raman, M. J. Matthews, J. J. Adams, S. G. Demos, “Monitoring annealing via CO(2) laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Mehta, N. C.

Menapace, J.

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Milam, D.

Miller, P. E.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

Moses, E.

Murray, J. R.

Neauport, J.

Néauport, J.

Negres, R. A.

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Nostrand, M. C.

Orth, C. D.

Patterson, R.

Pilon, F.

Raman, R. N.

Rubenchik, A. M.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Sacks, R. A.

Settgast, R. R.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Shao, J.

Shaw, M. J.

Shen, N.

N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Shen, X.-A.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Smith, A. V.

Soules, T. F.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Spaeth, M.

Spaeth, M. L.

J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Steele, W. A.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Stolken, J. S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Suratwala, T. I.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Sutton, S. B.

Tang, C.

Temple, P. A.

Tovena-Pecault, I.

Trenholme, J. B.

C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

Van Wonterghem, B. M.

Vignes, R. M.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wong, L. L.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Xiao, Q.

Yang, S. T.

Yi, K.

Zhai, L.

Zhao, Y.

Zhou, S.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

J. Am. Ceram. Soc. (2)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[CrossRef]

J. Appl. Phys. (1)

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Opt. Eng. (2)

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[CrossRef]

Opt. Express (10)

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[CrossRef] [PubMed]

K. Bien-Aimé, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Néauport, I. Tovena-Pecault, “Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm,” Opt. Express 17(21), 18703–18713 (2009).
[CrossRef] [PubMed]

X. Gao, G. Feng, J. Han, L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20(20), 22095–22101 (2012).
[CrossRef] [PubMed]

N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

R. A. Negres, M. D. Feit, S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

R. N. Raman, M. J. Matthews, J. J. Adams, S. G. Demos, “Monitoring annealing via CO(2) laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

Proc. SPIE (4)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Other (4)

P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” US8313662 (2012).

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized hf etch process,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, J. Shao, T. Jitsuno, and W. Rudolph, eds. (2013).

A. Torres, V. Courtney, A. M. Caen, F. Vietor, A. Moran, and H. L. Kelly, “Annual water quality report 2012” (San Francisco Public Utilities Commission, San Francisco, 2012).

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “Co2-laser polishing for reduction of 351-nm surface damage initiation in fused silica,” in Laser-Induced Damage in Optical Materials: 2001 Proceedings, G. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2002), pp. 34–39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Damage density as a function of fluence for typical AMP-etched silica optics. The AMP etch suppresses damage at low fluence, but another set of damage precursors remain. These high fluence precursors exhibit a sharp turn-on threshold with saturated damage densities exceeding 105 cm−2. These precursors are a particular problem in high fluence lasers as they limit the lifetime of optics exposed to high fluences. Adapted from [15]. Large and small beam protocols described in Sections 2.4 and 2.5.

Fig. 2
Fig. 2

(a) Optical micrograph of NaCl crystals left by aerosol deposition. The precipitates congregate in a pattern reflecting the impinging droplets due to the lack of bulk flow at these length scales. (b) Fast photoluminescence (PL) of the same region. The PL behavior is similar to that of defect precursors associated with fracture surfaces and show that the precipitated crystals have optical activity. (c) The same region after the large area laser test. All the damage sites are associated with the presence of a NaCl crystal prior to the shot. (d) Typical damage site morphology. The scale bars for (a)-(c) are 100 μm; the scale bar for (d) is 20 μm.

Fig. 3
Fig. 3

Cleaning threshold (R/1 protocol) and damage threshold (S/1 protocol) for various salts as measured by small area laser damage testing. The number above each salt is the band gap of the bulk material. Despite the fact that in bulk these materials are transparent at the test wavelength (355 nm = 3.5 eV), they exhibit near-metallic like absorption and can act as high fluence precursors when precipitated on silica surfaces.

Fig. 4
Fig. 4

(a) Optical micrograph of the surface of a sample that has been subjected to an aerosol deposition of DI water. (b) The same region after large area damage testing showing many typical damage sites. These sites are not associated with any visible feature in panel (a). (c) Cumulative damage density as a function of fluence after aerosol deposition of DI water. For reference, a series of samples prepared without the aerosol deposition is also shown. (d) AFM image of nanoscale precipitates, highlighted with blue circles, found on the surface after aerosol deposition of DI water. The nanoscale features are discrete, sub-micron in lateral extent, and range between 10 and 100 nm in height.

Fig. 5
Fig. 5

(a) Damage density at 40 J/cm2, 5 ns FIT, as a function of impurity concentration intentionally added to the etchant. The damage density increases significantly for impurity concentrations greater than 100 ppb. Beyond an impurity concentration of 100 ppb, the damage density begins to increase strongly. (b) Damage density at 40 J/cm2 as a function of fraction untreated municipal water in various process steps.

Fig. 6
Fig. 6

White light interferometric images showing IR heat-treated zone (top) and R/1 damage test data (bottom) for samples (a) as-treated and (b) after heat treatment and water rinsing. The R/1 damage threshold is normalized to the surface damage threshold (near 40 J/cm2). The area between the dashed lines is the heated-treated site.

Fig. 7
Fig. 7

Correlation between density of nanoscale precipitates and damage density of several samples. The correlation suggests that nanoscale precipitates observed by AFM are high fluence precursors. Note that the areal density of nanoscale features always exceeds the observed damage density.

Fig. 8
Fig. 8

Establishing protocols designed to eliminate or reduce the chance of precipitation enables the production of optics with saturated (high fluence) damage density up to 100x lower than those reported in the literature. See the text for an explanation of the testing protocols used for low density damage testing. Data for the top curve adapted from [15]. All damage measurement performed using the large beam, 355nm, 5ns FIT protocol.

Metrics