Abstract

A compact two-mode (de)multiplexer [(DE)MUX] based on symmetric Y-junction and multimode interference (MMI) waveguides was designed by 3D beam propagation method (BPM). The phase evolution in the structure was discussed in detail. Simulations show that the optical bandwidth is as large as 100 nm (1500 nm ~1600 nm). The two-mode (DE)MUX is very compact compared with the other kind of mode (DE)MUX. The length of the structure is only 48.8 μm. Simulation also shows the fabrication tolerance is as large as ± 75 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rational and challenges for optical interconnect to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  2. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [CrossRef]
  3. D. X. Dai, J. Wang, Y. C. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [CrossRef] [PubMed]
  4. M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [CrossRef] [PubMed]
  5. Y. H. Ding, J. Xu, F. Da Ros, B. Huang, H. Y. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [CrossRef] [PubMed]
  6. J. J. Xing, Z. Y. Li, X. Xiao, J. Z. Yu, Y. D. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [CrossRef] [PubMed]
  7. J. D. Love, N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [CrossRef]
  8. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  9. N. Riesen, J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [CrossRef] [PubMed]
  10. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  11. W. W. Chen, P. J. Wang, J. Y. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
    [CrossRef] [PubMed]
  12. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [CrossRef]
  13. M. Izutsu, Y. Nakai, T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7(3), 136–138 (1982).
    [CrossRef] [PubMed]
  14. A. G. Medoks, “Theory of symmetric waveguide Y-junction,” Radio Engineering and Electronic Physics-USSR 13, 106 (1968).
  15. D. Dai, S. He, “Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section,” IEEE Photon. Technol. Lett. 20(8), 599–601 (2008).
    [CrossRef]
  16. D. Dai, S. Liu, S. He, Q. Zhou, “Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer,” J. Lightwave Technol. 20(11), 1957–1961 (2002).
    [CrossRef]
  17. Y. H. Ding, H. Y. Ou, C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [CrossRef] [PubMed]

2013 (7)

2012 (3)

2009 (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

2008 (1)

D. Dai, S. He, “Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section,” IEEE Photon. Technol. Lett. 20(8), 599–601 (2008).
[CrossRef]

2005 (1)

2002 (1)

2000 (1)

D. A. B. Miller, “Rational and challenges for optical interconnect to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

1982 (1)

1968 (1)

A. G. Medoks, “Theory of symmetric waveguide Y-junction,” Radio Engineering and Electronic Physics-USSR 13, 106 (1968).

Chen, W. W.

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Da Ros, F.

Dadap, J. I.

Dai, D.

D. Dai, S. He, “Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section,” IEEE Photon. Technol. Lett. 20(8), 599–601 (2008).
[CrossRef]

D. Dai, S. Liu, S. He, Q. Zhou, “Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer,” J. Lightwave Technol. 20(11), 1957–1961 (2002).
[CrossRef]

Dai, D. X.

Ding, Y. H.

Driscoll, J. B.

Greenberg, M.

Grote, R. R.

He, S.

D. Dai, S. He, “Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section,” IEEE Photon. Technol. Lett. 20(8), 599–601 (2008).
[CrossRef]

D. Dai, S. Liu, S. He, Q. Zhou, “Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer,” J. Lightwave Technol. 20(11), 1957–1961 (2002).
[CrossRef]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Huang, B.

Ishizaka, Y.

Izutsu, M.

Kawaguchi, Y.

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Koshiba, M.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Li, Z. Y.

Liu, S.

Love, J. D.

Lu, M.

Medoks, A. G.

A. G. Medoks, “Theory of symmetric waveguide Y-junction,” Radio Engineering and Electronic Physics-USSR 13, 106 (1968).

Miller, D. A. B.

D. A. B. Miller, “Rational and challenges for optical interconnect to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Nakai, Y.

Orenstein, M.

Osgood, R. M.

Ou, H. Y.

Peucheret, C.

Riesen, N.

Saitoh, K.

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Shi, Y. C.

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Souhan, B.

Sueta, T.

Uematsu, T.

Wang, J.

Wang, P. J.

Xiao, X.

Xing, J. J.

Xu, J.

Yang, J. Y.

Yu, J. Z.

Yu, Y. D.

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Zhou, Q.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

D. Dai, S. He, “Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section,” IEEE Photon. Technol. Lett. 20(8), 599–601 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (6)

Proc. IEEE (2)

D. A. B. Miller, “Rational and challenges for optical interconnect to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham, “computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Radio Engineering and Electronic Physics-USSR (1)

A. G. Medoks, “Theory of symmetric waveguide Y-junction,” Radio Engineering and Electronic Physics-USSR 13, 106 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation and operation principle of the two-mode (DE)MUX based on symmetric Y-junction and MMI waveguide

Fig. 2
Fig. 2

3D BPM calculated phase difference of the phase shift as a function of the phase length LPS.

Fig. 3
Fig. 3

BPM simulated field distribution of the two-mode MUX at the operating wavelength 1550nm when the (a) fundamental mode and (b) second-order mode is launched.

Fig. 4
Fig. 4

Wavelength dependence of the designed two-mode MUX using as a “mode demultiplexer” when the input is the fundamental modes and the second-order mode respectively

Fig. 5
Fig. 5

fabrication tolerance of the parameter of W3

Fig. 6
Fig. 6

fabrication tolerance of the parameter of LPS

Fig. 7
Fig. 7

the simulated field distribution of the designed two-mode (DE)MUX when the fundamental mode is launched into the access arms at the wavelength of 1550nm. (a) right input arm (b) left arm (c) both the input arms

Metrics