Abstract

A CMOS compatible post-processing method to reduce optical losses in silicon nitride (Si3N4) integrated optical waveguides is demonstrated. Using thin layer atomic layer deposition (ALD) of aluminum oxide (Al2O3) we demonstrate that surface roughness can be reduced. A 40 nm thick Al2O3 layer is deposited by ALD over Si3N4 based strip waveguides and its influence on the surface roughness and the waveguide loss is studied. As a result, an improvement in the waveguide loss, from very high loss (60 dB/cm) to low-loss regime (~5 dB/cm) is reported for a 220 nm x 500 nm Si3N4 wire at 900 nm wavelength. This opens prospects to implement very low loss waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [CrossRef] [PubMed]
  2. J. N. Milgram, J. Wojcik, P. Mascher, A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
    [CrossRef] [PubMed]
  3. K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [CrossRef] [PubMed]
  4. A. Gondarenko, J. S. Levy, M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  5. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics,” J. Lightwave Technol. 25(9), 2579–2589 (2007).
    [CrossRef]
  6. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
    [CrossRef]
  7. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [CrossRef]
  8. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  9. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [CrossRef]
  10. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [CrossRef] [PubMed]
  11. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [CrossRef] [PubMed]
  12. I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
    [CrossRef]
  13. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [CrossRef] [PubMed]
  14. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011).
    [CrossRef] [PubMed]
  15. M. Häyrinen, M. Roussey, V. Gandhi, M. Kuittinen, and S. Honkanen, “New approach to fabricate low-loss Titanium dioxide waveguides with electron beam lithography and atomic layer deposition,” in Conference Paper on Advanced Photonics 2013, OSA Technical Digest (online), paper IT2A.5 (2013).
  16. A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
    [CrossRef]
  17. F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
    [CrossRef]
  18. FIMMWAVE by Photon Design, http://www.photond.com/ .
  19. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [CrossRef]

2013 (2)

2012 (2)

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

2011 (2)

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

2010 (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

2004 (2)

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

Aimez, V.

Alasaarela, T.

Alic, N.

Alloatti, L.

Baets, R.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Bellutti, P.

Borreman, A.

Cassan, E.

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

Charette, P.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Crivellari, M.

Daldosso, N.

Desiatov, B.

I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Dhakal, A.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Fainman, Y.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Finkelstein, H.

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Freude, W.

Gaeta, A. L.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Geuzebroek, D. H.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

Girardini, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Gorin, A.

Goykhman, I.

I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Grillot, F.

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

Grondin, E.

Halir, R.

Heideman, R. G.

Honkanen, S.

Ikeda, K.

Jaouad, A.

Knights, A. P.

Komorowska, K.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Korn, D.

Laval, S.

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Leinse, A.

Leuthold, J.

Levy, J. S.

Levy, U.

I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Lui, A.

Martinelli, M.

Mascher, P.

Melchiorri, M.

Melloni, A.

Merget, F.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Milgram, J. N.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Morichetti, F.

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Okawachi, Y.

Palmer, R.

Pascal, D.

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

Pavesi, L.

Pucker, G.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Riboli, F.

Romero-García, S.

Saperstein, R. E.

Säynätjoki, A.

Selvaraja, S.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Subramanian, A. Z.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Tervonen, A.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Verheyen, P.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Vivien, L.

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Witzens, J.

Wojcik, J.

Zhong, F.

Appl. Phys. Lett. (1)

I. Goykhman, B. Desiatov, U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

Opt. Express (7)

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[CrossRef] [PubMed]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011).
[CrossRef] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[CrossRef] [PubMed]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[CrossRef] [PubMed]

J. N. Milgram, J. Wojcik, P. Mascher, A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

M. Häyrinen, M. Roussey, V. Gandhi, M. Kuittinen, and S. Honkanen, “New approach to fabricate low-loss Titanium dioxide waveguides with electron beam lithography and atomic layer deposition,” in Conference Paper on Advanced Photonics 2013, OSA Technical Digest (online), paper IT2A.5 (2013).

FIMMWAVE by Photon Design, http://www.photond.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index as determined by ellipsometry of Si3N4 thin film.

Fig. 2
Fig. 2

SEM micrographs of the Si3N4 device cross-sections prepared using FIB milling. (a) 220 nm x 500 nm Si3N4 wire along with underlying SiO2. (b) Grating coupler with 140 nm partial etch depth, 630 nm period. (c) 220 nm x 500 nm Si3N4 wire.

Fig. 3
Fig. 3

SEM micrographs of the 40 nm Al2O3 ALD clad Si3N4 waveguide cross-sections prepared using FIB milling. (a): SEM cross section image of the dummy sample placed in the chamber during ALD deposition, measured thickness of deposited Al2O3 is 39.9 nm. (b) Lower contrast SEM image of deposited Al2O3 over the Si3N4 waveguide.

Fig. 4
Fig. 4

Graph shows cut-back measurement results after 40 nm ALD deposition of Al2O3. Chip1 and Chip2 exhibit much reduced loss of 4.9 dB/cm and 5.8 dB/cm, respectively.

Fig. 5
Fig. 5

(Top) Image captured through an optical microscope of Si3N4 wire conducting light coupled through a grating coupler. (Below) Corresponding intensity decay plot to determine loss. (a) Air clad waveguide, 62 dB/cm and (b) 40 nm Al2O3 ALD coated Si3N4 waveguide, 6.2 dB/cm.

Fig. 6
Fig. 6

Ex field distribution of the quasi-TE mode at the center of the Si3N4 strip waveguide are shown. On the Y-axis the Ex field amplitude are marked at critical material interfaces (a) Air clad Si3N4 wire showing a high Ex field amplitude at the rough, Si3N4-air material interface. (b) Al2O3 clad Si3N4 wire showing a lower Ex field amplitude at the rough, Si3N4-air material interface and a higher Ex field amplitude at the less rough Al2O3-air interface.

Tables (4)

Tables Icon

Table 1 Loss measurement results for air clad samples obtained via cut-back measurements are shown. Roughness data of the waveguides obtained by AFM analysis of waveguide surface is also shown. For comparison, loss and surface roughness data of air clad samples fabricated by a different etch recipe and reported in [16] are presented.

Tables Icon

Table 2 Wavelength equivalence between Si wire and Si3N4 wire at 1550 nm and 900 nm wavelengths, respectively. Wire geometry 500 nm X 220 nm.

Tables Icon

Table 3 Average RMS and average maximum peak-to-peak surface roughness data obtained by AFM for Chip1 and Chip2 after 40 nm Al2O3 ALD deposition. Propagation loss (dB/cm) and excess-loss (dB) obtained by cut-back measurements after ALD deposition over Chip1 and Chip2 is also shown.

Tables Icon

Table 4 Comparison of fill factors in air clad and ALD coated Si3N4 chips.

Metrics