Abstract

Bismuth-Gallium co-doped silica glass fiber preform was prepared from nano-porous silica xerogels using a conventional solution doping technique with a heterotrinuclear complex and subsequent sintering. Ga-connected optical Bismuth active center (BAC) was identified as the analogue of Al-connected BAC. Visible and infrared photoluminescence (PL) were investigated in a wide temperature range of 1.46 – 300 K. Based on the results of the continuous wave (CW) and time resolved (TR) spectroscopy we identify the centers emitting in the spectral region of 480 – 820 nm as Bi+ ions. The near infrared (NIR) PL around 1100 nm consists of two bands. While the first one can be ascribed to the transition in Bi+ ion, the second band is presumably associated to defects. We put in evidence the energy transfer (ET) between Bi+ ions and the second NIR emitting center via quadrupole-quadrupole and dipole-quadrupole mechanisms of interactions. Finally, we propose the energy level diagram of Bi+ ion interacting with this defect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Bufetov, E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
    [CrossRef]
  2. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
    [CrossRef]
  3. Y. Fujimoto, M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,”. J. Appl. Phys. 40, L279–L281 (2001).
  4. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
    [CrossRef]
  5. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light: Sci. Appl. 1, 1–7 (2012).
    [CrossRef]
  6. M. Y. Sharonov, A. B. Bykov, V. Petricevic, R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33, 2131–2133 (2008).
    [CrossRef] [PubMed]
  7. M. Y. Sharonov, A. B. Bykov, R. R. Alfano, “Excitation relaxation pathways in p-element (Bi, Pb, Sb and Sn)-doped germanate glasses,” J. Opt. Soc. Am. B 26, 1435–1441 (2009).
    [CrossRef]
  8. H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
    [CrossRef]
  9. H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express 1, 234–242 (2011).
    [CrossRef]
  10. I. Razdobreev, H. El Hamzaoui, G. Bouwmans, M. Bouazaoui, V. B. Arion, “Photoluminescence of sol-gel silica fiber preform doped with Bismuth-containing heterotrinuclear complex,” Opt. Mater. Express 2, 205–213 (2012).
    [CrossRef]
  11. I. Razdobreev, H. El Hamzaoui, V. Y. Ivanov, E. F. Kustov, B. Capoen, M. Bouazaoui, “Optical spectroscopy of Bismuth-doped pure silica fiber preform,” Opt. Lett. 35, 1341–1343 (2010).
    [CrossRef] [PubMed]
  12. I. Razdobreev, L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33, 973–977 (2011).
    [CrossRef]
  13. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. of Quant. Electron. 44, 834–840 (2008).
    [CrossRef]
  14. L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
    [CrossRef]
  15. G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
    [CrossRef]
  16. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).
  17. J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
    [CrossRef]
  18. D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays, Phys. Rev. B 74,184430 (2006).
    [CrossRef]
  19. M. Hughes, T. Suzuki, Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25, 1380–1386 (2008).
    [CrossRef]
  20. A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
    [CrossRef]
  21. Von Th. Förster, “Zwischenmolekulare Energiewanderung und Foureszenz,” Ann. Phys.-Berlin, 6, 55–75 (1948).
    [CrossRef]
  22. A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, L. Bigot, “A pure silica ytterbium-doped solgel-based fiber laser,” Laser Phys. Lett. 10, 055106 (2013).
    [CrossRef]
  23. R. K. Watts, “Energy transfer fenomena,” in Optical Properties of Ions in Solids, B. Di Bartolo, ed. (Plenum, 1975).
    [CrossRef]
  24. A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Uspekhi, 27, 579–606 (1984).
    [CrossRef]
  25. V. P. Sakun, “Kinetics of energy transfer in a crystal,” Fiz. Tverd. Tela (Leningrad), 14, 2199–2210 (1972).
  26. Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).
  27. A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).
  29. K. Rebane, P. Saari, “Hot luminescence and relaxation processes in resonant secondary emission of solid matter,” J. Lumin. 16, 223–243 (1978).
    [CrossRef]
  30. R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
    [CrossRef]
  31. I. B. Bersuker, The Jahn-Teller Effect (Cambridge University, 2006).
    [CrossRef]
  32. V. Sokolov, V. Plotnichenko, E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
    [CrossRef] [PubMed]
  33. E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34, 1549–1551 (2009).
    [CrossRef] [PubMed]
  34. E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
    [CrossRef]
  35. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
    [CrossRef] [PubMed]
  36. J. A. Duffy, “A common optical basicity scale for oxide and fluoride glasses,” J. Non-Cryst. Solids 109, 35–39 (1989).
    [CrossRef]
  37. S. V. Firstov, V. F. Khopin, I. Bufetov, E. G. Firstova, A. N. Guryanov, E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19, 19551–19561 (2011).
    [CrossRef] [PubMed]
  38. E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, I. Bufetov, “High-power cw bismuth fiber lasers,” J. Opt. Soc. Am. B 24, 1749–1755 (2007).
    [CrossRef]
  39. I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34, 2691–2693 (2009).
    [CrossRef] [PubMed]
  40. V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett. 38, 362–364 (2013).
    [CrossRef] [PubMed]
  41. V. O. Sokolov, V. G. Plotnichenko, E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express 21, 9324–9332 (2013).
    [CrossRef] [PubMed]

2013

2012

2011

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express 1, 234–242 (2011).
[CrossRef]

S. V. Firstov, V. F. Khopin, I. Bufetov, E. G. Firstova, A. N. Guryanov, E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19, 19551–19561 (2011).
[CrossRef] [PubMed]

I. Razdobreev, L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33, 973–977 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

2010

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

I. Razdobreev, H. El Hamzaoui, V. Y. Ivanov, E. F. Kustov, B. Capoen, M. Bouazaoui, “Optical spectroscopy of Bismuth-doped pure silica fiber preform,” Opt. Lett. 35, 1341–1343 (2010).
[CrossRef] [PubMed]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

2009

2008

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. of Quant. Electron. 44, 834–840 (2008).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

V. Sokolov, V. Plotnichenko, E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25, 1380–1386 (2008).
[CrossRef]

M. Y. Sharonov, A. B. Bykov, V. Petricevic, R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33, 2131–2133 (2008).
[CrossRef] [PubMed]

2007

2006

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays, Phys. Rev. B 74,184430 (2006).
[CrossRef]

2005

2001

Y. Fujimoto, M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,”. J. Appl. Phys. 40, L279–L281 (2001).

1999

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

1994

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

1989

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

J. A. Duffy, “A common optical basicity scale for oxide and fluoride glasses,” J. Non-Cryst. Solids 109, 35–39 (1989).
[CrossRef]

1984

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Uspekhi, 27, 579–606 (1984).
[CrossRef]

1983

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

1978

K. Rebane, P. Saari, “Hot luminescence and relaxation processes in resonant secondary emission of solid matter,” J. Lumin. 16, 223–243 (1978).
[CrossRef]

1976

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

1972

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Fiz. Tverd. Tela (Leningrad), 14, 2199–2210 (1972).

1948

Von Th. Förster, “Zwischenmolekulare Energiewanderung und Foureszenz,” Ann. Phys.-Berlin, 6, 55–75 (1948).
[CrossRef]

Alfano, R. R.

Arion, V. B.

Avanesov, A. G.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Bartram, R. H.

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

Basiev, T. T.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Baz, A.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, L. Bigot, “A pure silica ytterbium-doped solgel-based fiber laser,” Laser Phys. Lett. 10, 055106 (2013).
[CrossRef]

Berrier, E.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

Bersuker, I. B.

I. B. Bersuker, The Jahn-Teller Effect (Cambridge University, 2006).
[CrossRef]

Bigot, L.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, L. Bigot, “A pure silica ytterbium-doped solgel-based fiber laser,” Laser Phys. Lett. 10, 055106 (2013).
[CrossRef]

I. Razdobreev, L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33, 973–977 (2011).
[CrossRef]

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express 1, 234–242 (2011).
[CrossRef]

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34, 2691–2693 (2009).
[CrossRef] [PubMed]

Blasse, G.

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Bouazaoui, M.

Bouwmans, G.

Bufetov, I.

Bulatov, L.

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

Bulatov, L. I.

Burshtein, A. I.

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Uspekhi, 27, 579–606 (1984).
[CrossRef]

Bykov, A. B.

Capoen, B.

Chen, D.

Chun, G.-M.

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

Courtheoux, L.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

Denker, B. I.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Dianov, E.

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

I. Bufetov, E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
[CrossRef]

V. Sokolov, V. Plotnichenko, E. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).
[CrossRef] [PubMed]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, I. Bufetov, “High-power cw bismuth fiber lasers,” J. Opt. Soc. Am. B 24, 1749–1755 (2007).
[CrossRef]

Dianov, E. M.

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

Duffy, J. A.

J. A. Duffy, “A common optical basicity scale for oxide and fluoride glasses,” J. Non-Cryst. Solids 109, 35–39 (1989).
[CrossRef]

Dvoyrin, V.

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

Dvoyrin, V. V.

E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34, 1549–1551 (2009).
[CrossRef] [PubMed]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. of Quant. Electron. 44, 834–840 (2008).
[CrossRef]

El Hamzaoui, H.

Fattakhova, Z. T.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Favre, A.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

Fedorov, V. S.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Firstov, S. V.

Firstova, E. G.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).

Fockele, M.

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

Förster, Von Th.

Von Th. Förster, “Zwischenmolekulare Energiewanderung und Foureszenz,” Ann. Phys.-Berlin, 6, 55–75 (1948).
[CrossRef]

Fsaifes, I.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, L. Bigot, “A pure silica ytterbium-doped solgel-based fiber laser,” Laser Phys. Lett. 10, 055106 (2013).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto, M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,”. J. Appl. Phys. 40, L279–L281 (2001).

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

Godlewski, M.

Guryanov, A. N.

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Haula, E. V.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Hughes, M.

Ivanov, V. Y.

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Jiang, X.

Johnston, D. C.

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays, Phys. Rev. B 74,184430 (2006).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

Kang, J.-G.

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

Khopin, V. F.

Kim, Y.-D.

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

Korchak, V. N.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Kouznetsov, M. S.

Kustov, E.

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

Kustov, E. F.

Laksshminaranayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Lisitsky, I. S.

Lohse, F.

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

Maksimova, G. C.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Mamedov, T. G.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Mashinsky, V.

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

Mashinsky, V. M.

E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34, 1549–1551 (2009).
[CrossRef] [PubMed]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. of Quant. Electron. 44, 834–840 (2008).
[CrossRef]

Medvedkov, O.

Meijerink, A.

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Melkumov, M.

Meng, X.

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

Myzina, V. A.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Nakatsuka, M.

Y. Fujimoto, M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,”. J. Appl. Phys. 40, L279–L281 (2001).

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

Nguyen, V.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Ohishi, Y.

Osiko, V. V.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[CrossRef] [PubMed]

Petricevic, V.

Philippovskiy, D. V.

Plotnichenko, V.

Plotnichenko, V. G.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).

Prokhorov, A. M.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Qiu, J.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).
[CrossRef] [PubMed]

Razdobreev, I.

Rebane, K.

K. Rebane, P. Saari, “Hot luminescence and relaxation processes in resonant secondary emission of solid matter,” J. Lumin. 16, 223–243 (1978).
[CrossRef]

Romanov, A. N.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Saari, P.

K. Rebane, P. Saari, “Hot luminescence and relaxation processes in resonant secondary emission of solid matter,” J. Lumin. 16, 223–243 (1978).
[CrossRef]

Sakun, V. P.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Fiz. Tverd. Tela (Leningrad), 14, 2199–2210 (1972).

Sharonov, M. Y.

Shcherbakov, I. A.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Shubin, A.

Sokolov, V.

Sokolov, V. O.

Spaeth, J.-M.

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

Sulimov, V. B.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Suzuki, T.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).

Tsuboi, T.

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

Tsvetkov, V. B.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Veber, A. A.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).

Voron’ko, Yu. K.

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Watts, R. K.

R. K. Watts, “Energy transfer fenomena,” in Optical Properties of Ions in Solids, B. Di Bartolo, ed. (Plenum, 1975).
[CrossRef]

Wondraczek, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Yoon, H.-M.

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

Zaramenskikh, K. S.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

Zhao, Q.

Zhigunov, D. M.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Zhou, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Zhu, C.

Zuidemaa, J.

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Adv. Materials

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Laksshminaranayana, J. Hao, J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Materials 18, 1407–1413 (2008).

Ann. Phys.-Berlin

Von Th. Förster, “Zwischenmolekulare Energiewanderung und Foureszenz,” Ann. Phys.-Berlin, 6, 55–75 (1948).
[CrossRef]

Fiz. Tverd. Tela (Leningrad)

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Fiz. Tverd. Tela (Leningrad), 14, 2199–2210 (1972).

Fusion Eng. Des.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, “Bi-doped SiO2as a new laser material for an intense laser,” Fusion Eng. Des. 44, 437–439 (1999).
[CrossRef]

IEEE J. of Quant. Electron.

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. of Quant. Electron. 44, 834–840 (2008).
[CrossRef]

J. Appl. Phys.

Y. Fujimoto, M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,”. J. Appl. Phys. 40, L279–L281 (2001).

J. Lumin.

K. Rebane, P. Saari, “Hot luminescence and relaxation processes in resonant secondary emission of solid matter,” J. Lumin. 16, 223–243 (1978).
[CrossRef]

J. Non-Cryst. Solids

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, “Discussion on the origin of NIR emission from Bi-doped,” J. Non-Cryst. Solids 357, 2241–2245 (2011).
[CrossRef]

J. A. Duffy, “A common optical basicity scale for oxide and fluoride glasses,” J. Non-Cryst. Solids 109, 35–39 (1989).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B: At. Mol. Opt. Phys.

E. Kustov, L. Bulatov, V. Dvoyrin, V. Mashinsky, E. Dianov, “Crystal field and molecular orbital theory of MBm centers in glasses,” J. Phys. B: At. Mol. Opt. Phys. 43, 025402 (2010).
[CrossRef]

J. Phys. Chem. Solids

G. Blasse, A. Meijerink, M. Nomes, J. Zuidemaa, “Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

J. Phys.: Condens. Matter

J.-G. Kang, H.-M. Yoon, G.-M. Chun, Y.-D. Kim, T. Tsuboi, “Spectroscopic studies of Bi3+ colour centers in KCl single crystals,” J. Phys.: Condens. Matter, 6, 2101–2116 (1994).
[CrossRef]

J. Phys: Condens. Matter

R. H. Bartram, M. Fockele, F. Lohse, J.-M. Spaeth, “Crystal-field model of the Pb0(2) centre in SrF2,” J. Phys: Condens. Matter 1, 27–34 (1989).
[CrossRef]

Laser Phys. Lett.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, L. Bigot, “A pure silica ytterbium-doped solgel-based fiber laser,” Laser Phys. Lett. 10, 055106 (2013).
[CrossRef]

I. Bufetov, E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6, 487–504 (2009).
[CrossRef]

Light: Sci. Appl.

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light: Sci. Appl. 1, 1–7 (2012).
[CrossRef]

Mater. Chem. Phys.

H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys. 121, 83–88 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

I. Razdobreev, L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33, 973–977 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 25, 155–158 (2011).
[CrossRef]

Opt. Mater. Express

Phys. Rev. B

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays, Phys. Rev. B 74,184430 (2006).
[CrossRef]

Quantum Electron.

L. Bulatov, V. Mashinsky, V. Dvoyrin, E. Kustov, E. Dianov, “Luminescent properties of bismuth centres in aluminosilicate optical fibers,” Quantum Electron. 40, 153–159 (2010).
[CrossRef]

Sov. Phys. JETP

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, G. C. Maksimova, V. A. Myzina, V. V. Osiko, V. S. Fedorov, “Investigation of spatial distribution of impurities in solids by the method of kinetic luminescent spectroscopy,” Sov. Phys. JETP 57, 596–604 (1983).

Sov. Phys. Uspekhi

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Uspekhi, 27, 579–606 (1984).
[CrossRef]

Other

I. B. Bersuker, The Jahn-Teller Effect (Cambridge University, 2006).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 (Cambridge University, 1992).

R. K. Watts, “Energy transfer fenomena,” in Optical Properties of Ions in Solids, B. Di Bartolo, ed. (Plenum, 1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

CW PL spectra. a) Normalized room temperature PL spectra under excitation at 532 and 660 nm; b) Comparison of the PL spectra at λexc = 532 nm (T = 300 and 1.46 K), λexc = 660 nm (T = 1.46 K) and λexc = 800 nm (T = 1.46 K).

Fig. 2
Fig. 2

CW PL spectra in the spectral range of 500 – 900 nm. a) T = 1.46 K; λexc = 480, 532 and 660 nm. b) λexc = 532 nm, variable temperature.

Fig. 3
Fig. 3

Gaussian decomposition of the PL bands in the region of 550 – 900 nm at T = 1.46K. a) λexc = 532 nm; b) λexc = 660 nm. Spectral resolution 0.8 nm.

Fig. 4
Fig. 4

Anti-Stokes PL in the region of 600 – 850 nm, λexc = 1078.4 nm, P exc = 1 W, spectral resolution 1 nm. a) various temperatures, experimental spectra ; b) Gaussian decomposition of the normalized spectrum recorded at T = 77 K. The spectrum was corrected and normalized (see the data in Table 1).

Fig. 5
Fig. 5

a) Contour plot of the PL intensity in Ga/Bi co-doped silica glass, T = 1.46 K; b) In color: spectra at the selected excitation WL’s, T = 1.46 K. Black circles: normalized temperature dependence of the integral intensity under excitation at 710 nm. The integral intensities were normalized to that at 1.46 K, the line is drawn to guide the eyes).

Fig. 6
Fig. 6

PL spectra recorded under excitation at 1000, 1060, 1070 and 1090 nm. Excitation power 50 mW, T = 1.46 K, spectral resolution 1.5 nm. Main window: experimental spectra, linear scale. Inset: the same spectra in a semi-log scale.

Fig. 7
Fig. 7

a) and b) time resolved PL spectra in the WL range 550 – 900 nm, at T = 300 and T = 1.46 K, respectively, λexc = 532 nm, spectral resolution 1 nm, time resolution 32 ns; c) proposed energy levels structure (see the text); d) anti-Stokes PL under excitation at 1060 nm; the transition at ∼ 570 nm is pointed out by arrow.

Fig. 8
Fig. 8

PL decay kinetics at the selected WL’s and various temperatures. λexc = 532 nm, spectral resolution 1 nm, time resolution 32 ns. (a) 670 nm; (b) 780 nm; c) 737 nm.

Fig. 9
Fig. 9

Decay kinetics of the band P3 (737 nm). λexc = 532 nm, spectral resolution 1 nm, time resolution 32 ns. a) Normalized plots as a function of t3/S) (the color of the particular plot corresponds to the color of the bottom axis); b) Experimental decay kinetics and the fit in the assumption of the quadrupole-quadrupole nature of the donor-acceptor interaction.

Fig. 10
Fig. 10

Decay kinetics recorded under excitation at 660 nm. T = 1.46 K. a) λdet = 745 nm; a) λdet = 820 nm.

Fig. 11
Fig. 11

Decay kinetics recorded at 1150 nm under excitation at 532, 710 and 1064 nm. T = 1.46 K, excitation pulse width 8 ns, pulse energy 100 μJ. a) Time resolution 1.024 μs; b) Time resolution 4 ns, color coding corresponds to the left panel. Inset: expanded view of the fast initial stage.

Fig. 12
Fig. 12

Energy level diagram of the donor-acceptor pair in Ga/Bi (Al/Bi) co-doped glass. SO - spin-orbit interaction; ETda - energy transfer between Bi+ ions (donors), and defects (acceptors); JTE and PJTE are the Jahn-Teller and pseudo Jahn-Teller effects, respectively.

Tables (2)

Tables Icon

Table 1 Summary of PL bands observed at 1.46 K under excitation at 532 and 660 nm and in the anti-stokes spectrum at 77 K

Tables Icon

Table 2 Summary of the bi-exponential fit parameters of the decay kinetics at 1150 nm.

Metrics