Abstract

In this paper a near infrared gain-switched fiber laser based on oscillator stage only design with high peak power is presented. Output pulses reached 2.3 kW of peak power and duration of less than 60 ns. The dependence of the laser pulse duration on operation parameters was measured and theoretically explained. As the setup is based on flexible micro structured single polarization fiber, the laser output exhibits high polarization extinction ratio. Due to the narrow output spectrum the setup is suitable for second harmonic generation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [CrossRef] [PubMed]
  2. R. Petkovšek, J. Saby, F. Salin, T. Schumi, F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
    [CrossRef] [PubMed]
  3. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
    [CrossRef] [PubMed]
  4. S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III (SPIE, 2006), 61020O.
  5. Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).
  6. V. Agrež, R. Petkovšek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52(13), 3066–3072 (2013).
    [CrossRef] [PubMed]
  7. C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
    [CrossRef] [PubMed]
  8. R. Petkovšek, V. Agrež, “Single stage Yb-doped fiber laser based on gain switching with short pulse duration,” Opt. Express 22(2), 1366–1371 (2014).
    [CrossRef] [PubMed]
  9. A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.
  10. W. Koechner, “Relaxation oscillations,” in Solid-State Laser Engineering (Springer, 2006), pp. 128–134.
  11. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, “Gain switching of a Nd+3-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
    [CrossRef] [PubMed]
  12. M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
  13. R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [CrossRef]

2014

2013

2012

2011

2009

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

1997

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

1989

Agrež, V.

Alkeskjold, T. T.

Bammer, F.

Bang, O.

Blau, P.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Broeng, J.

Cocquelin, B.

Fitzau, O.

Geiger, J.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

Giesberts, M.

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
[CrossRef] [PubMed]

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

Glick, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Hakimi, F.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Hansen, K. P.

Hoffmann, H. D.

Hoffmann, H.-D.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

Jungbluth, B.

Katz, M.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Lægsgaard, J.

Larsen, C.

Laurila, M.

Lebiush, E.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Mattsson, K. E.

Nafcha, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Noordegraaf, D.

Nyga, S.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Petkovšek, R.

Po, H.

Saby, J.

Salin, F.

Schumi, T.

Scolari, L.

Sintov, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

Skovgaard, P. M. W.

Snitzer, E.

Traub, M.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Tumminelli, R.

Zenteno, L. A.

Appl. Opt.

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,”Proc. SPIE 7195, 719529 (2009).

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).

Other

S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III (SPIE, 2006), 61020O.

A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

W. Koechner, “Relaxation oscillations,” in Solid-State Laser Engineering (Springer, 2006), pp. 128–134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A single polarization micro structured ytterbium doped fiber is used. It is pumped with high power 976 m pump diodes, temperature stabilized and controlled through the feedback loop.

Fig. 2
Fig. 2

Measured a) laser pulse peak power and b) pulse duration at different wavelengths in strongly pumped fiber. Solid line is the theoretical prediction in this wavelength range.

Fig. 3
Fig. 3

Comparison of three laser pulses at different operation wavelengths of 1015 nm, 1030 nm and 1040 nm. The corresponding pump pulses with pump pulse power of 330 W are also shown.

Fig. 4
Fig. 4

Figure a) shows the measured laser pulse duration and peak power in dependence of pump pulse power. The data (circles) are connected with solid line corresponding to linear fit and inverse square root fit as obtained from theoretical predictions. In b) the laser pulses and pump pulses energies are shown at corresponding pump pulse powers.

Fig. 5
Fig. 5

Transmitted amplitude in dependence of the rotation angle of the analyzer. The polarization contrast was greater than 21dB in 1.2 m long fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N 2 t = Γ σ c 0 V n s ( N 2 N 1 ) ϕ N 2 τ 21 + w ,
ϕ t = Γ σ c 0 V n s ( N 2 N 1 ) ϕ ϕ τ L + β N 2 τ 21 .
w = λ p P abs h c 0 = λ p h c 0 ( 1 10 α L / 10 ) P P .
t L p 2 π ( n s V h Γ λ p 1 σ P a b s ) 1 2 .
t P p P a b s 1 / 2 .

Metrics