Abstract

A polymer planar Bragg grating sensor is used for measuring both mechanical compressive and tensile strain. The planar waveguide with integrated Bragg grating is fabricated in bulk Polymethylmethacrylate in a single writing step using combined amplitude and phase mask technique. After butt coupling of a single-mode optical fiber the planar structure can be applied for measuring both mechanical tensile and compressive strain alongside the integrated waveguide without the need of further modifications. In this respect, we particularly report for the first time compressive strain measurements using a polymer Bragg grating. Furthermore, the sensitivity of the sensor against tensile and compressive strain, its reproducibility and hysteresis are investigated and discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  2. H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [CrossRef]
  3. W. Zhang, D. Webb, G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [CrossRef] [PubMed]
  4. G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
    [CrossRef]
  5. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
    [CrossRef]
  6. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
    [CrossRef]
  7. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
    [CrossRef] [PubMed]
  8. C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
    [CrossRef]
  9. C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
    [CrossRef]
  10. W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
    [CrossRef]
  11. M. Koerdt, F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
    [CrossRef]
  12. D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
    [CrossRef]
  13. C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
    [CrossRef]
  14. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating sensor for static strain measurements,” Opt. Lett. 38(5), 772–774 (2013).
    [CrossRef] [PubMed]
  15. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
    [CrossRef] [PubMed]
  16. K.-J. Kim, J.-K. Seo, M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
    [CrossRef] [PubMed]
  17. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
    [CrossRef]
  18. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [CrossRef]
  19. K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  20. C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
    [CrossRef]
  21. M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
    [CrossRef]
  22. A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [CrossRef]
  23. A. Abang, D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
    [CrossRef] [PubMed]

2013

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating sensor for static strain measurements,” Opt. Lett. 38(5), 772–774 (2013).
[CrossRef] [PubMed]

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[CrossRef]

A. Abang, D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
[CrossRef] [PubMed]

2012

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[CrossRef] [PubMed]

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Zhang, D. Webb, G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[CrossRef] [PubMed]

2011

M. Koerdt, F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

2010

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

2008

2006

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

2005

D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
[CrossRef] [PubMed]

2002

H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

2000

K. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

1997

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

1970

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Abang, A.

Abuelqomsan, M.

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Ambikairajah, E.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Bang, O.

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Barton, J. S.

Belle, S.

Bennion, I.

Carpenter, L. G.

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

Chandross, E. A.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Dalton, L. R.

H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Dobb, H.

Eldada, K. L.

K. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Fender, A.

Fork, R. L.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Gates, J. C.

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Gawith, C. B. E.

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Hartlaub, N.

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[CrossRef]

Hellmann, R.

Henzi, P.

D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Hill, K.

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Holms, C.

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Jen, A. K.

H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Jones, J. D. C.

Kaminow, I. P.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Kim, J.-W.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

Kim, K.-J.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

K.-J. Kim, J.-K. Seo, M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

Koerdt, M.

M. Koerdt, F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[CrossRef]

Koller, G.

Kouamo, M. T.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

Lee, H. J.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

Liu, B.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Luo, Y.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Ma, H.

H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

MacPherson, W. N.

Meltz, G.

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Metev, S.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Meteva, K.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Mohr, J.

D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Noh, Y.-O.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

Oh, M.-C.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

K.-J. Kim, J.-K. Seo, M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

Peng, G.

Peng, G. D.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Pieper, W.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Rabus, D. G.

D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Rajan, G.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Rosenberger, M.

Schmauss, B.

Seo, J.-K.

Shacklette, L. W.

K. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Silfvast, W. T.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Silva-López, M.

Smith, P. G. R.

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Sorensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Stefani, A.

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Tao, X. M.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Vollertsen, F.

M. Koerdt, F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[CrossRef]

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Wang, G. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Webb, D.

Webb, D. J.

Wenke, G.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Wochnowski, C.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Zhang, C.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Zhang, L.

Zhang, W.

Zhang, Z. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Zhao, D.

Adv. Mater.

H. Ma, A. K. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Appl. Phys. Lett.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, “Photoinduced refractive index increase in poly (methylmethacrylate) and its applications,” Appl. Phys. Lett. 16(12), 486–489 (1970).
[CrossRef]

Appl. Surf. Sci.

M. Koerdt, F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

D. G. Rabus, P. Henzi, J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

IEEE Sens. J.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6(2), 331–339 (2006).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[CrossRef]

J. Lightwave Technol.

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

J. Micromech. Microeng.

C. Holms, L. G. Carpenter, J. C. Gates, P. G. R. Smith, “Miniaturization of Bragg-multiplexed membrane transducers,” J. Micromech. Microeng. 22(2), 025017 (2012).
[CrossRef]

Opt. Commun.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Opt. Eng.

C. Holms, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, “Strain tuning of a composite silica-on-silicon direct UV written planar Bragg grating,” Opt. Eng. 49(4), 044601 (2010).
[CrossRef]

Opt. Exp.

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, H. J. Lee, “Flexible polymer waveguide tunable laser,” Opt. Exp. 18(8), 8392–8398 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Proc. SPIE

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[CrossRef]

Sens. Actua. A.

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A. 120(1), 44–52 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the polymer planar Bragg grating strain and pressure sensor (PPBG) including optical waveguide and Bragg grating. The fastening areas for the clamps are hatched. The direction of the applied force F is along the waveguide. For optical interrogation the sensor chip is connected to a single-mode fibre (SMF).

Fig. 2
Fig. 2

Spectral shift of the PPBG during a tensile and compressive strain measurement. (a) spectral shift versus travelled distance, (b) spectral shift versus applied force. Relationship between the induced strain to the polymer planar Bragg grating and the spectral shift of the Bragg wavelength calculated by using (c) the travelled distance as well as (d) the measured force of the universal tester.

Fig. 3
Fig. 3

Reflected spectra of the polymer planar Bragg grating upon load (tensile, compressive strain) and unloaded.

Fig. 4
Fig. 4

Investigations into the reproducibility of PPBGs showing (a) averaged values over the travelled distance during tensile strain sensing and (b) averaged values over the travelled distance during compressive strain sensing.

Fig. 5
Fig. 5

Investigation on a potential hysteresis of PPBG sensor signals showing the online reading of (a) tensile strain and (b) compressive strain as well as the averaged values over the travelled distance during (c) strain sensing and (d) during compression sensing.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

m λ B = 2 n e f f Λ ,
Δ l g r a t i n g = l g r a t i n g l P P B G Δ d t e s t e r .
ε = Δ l g r a t i n g l g r a t i n g .
σ = F A ,
ε = σ E ,

Metrics