Abstract

Image fusion is a popular method which provides better quality fused image for interpreting the image data. In this paper, color image fusion using wavelet transform is applied for securing data through asymmetric encryption scheme and image hiding. The components of a color image corresponding to different wavelengths (red, green, and blue) are fused together using discrete wavelet transform for obtaining a better quality retrieved color image. The fused color components are encrypted using amplitude- and phase-truncation approach in Fresnel transform domain. Also, the individual color components are transformed into different cover images in order to result disguising information of input image to an attacker. Asymmetric keys, Fresnel propagation parameters, weighing factor, and three cover images provide enlarged key space and hence enhanced security. Computer simulation results support the idea of the proposed fused color image encryption scheme.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, Optical and Digital Techniques for Information Security (Springer, 2005).
  2. S. Zhang, M. A. Karim, “Color image encryption using double random phase encoding,” Microw. Opt. Technol. Lett. 21(5), 318–323 (1999).
    [CrossRef]
  3. L. Chen, D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14(19), 8552–8560 (2006).
    [CrossRef] [PubMed]
  4. M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
    [CrossRef]
  5. X. Deng, D. Zhao, “Single-channel color image encryption using a modified Gerchberg-Saxton algorithm and mutual encoding in the Fresnel domain,” Appl. Opt. 50(31), 6019–6025 (2011).
    [CrossRef] [PubMed]
  6. H.-E. Hwang, “Optical color image encryption based on the wavelength multiplexing using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 285(5), 567–573 (2012).
    [CrossRef]
  7. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
    [CrossRef] [PubMed]
  8. B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
    [CrossRef]
  9. D. C. Tseng, Y. L. Chen, and M. S. C. Liu, “Wavelet based multispectral image fusion” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS), 4, 1956–1958 (2001).
  10. A. Alfalou, C. Brosseau, N. Abdallah, M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19(24), 24023–24029 (2011).
    [CrossRef] [PubMed]
  11. S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
    [CrossRef]
  12. A. Garzelli, “Possibilities and limitations of the use of wavelets in image fusion” IEEE International Geoscience and Remote Sensing Symp.1, 66–68 (2002).
    [CrossRef]
  13. G. Hong, Y. Zhang, “High resolution image fusion based on wavelet and HIS transformations” Proceedings of 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion99–104 (2003).
  14. F. Sadjadi, “Invariant algebra and the fusion of multi-spectral information,” Inf. Fusion 3(1), 39–50 (2002).
    [CrossRef]
  15. A. Alfalou, C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
    [CrossRef]
  16. A. Alfalou, C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35(11), 1914–1916 (2010).
    [CrossRef] [PubMed]
  17. W. Qin, X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35(2), 118–120 (2010).
    [CrossRef] [PubMed]
  18. S. K. Rajput, N. K. Nishchal, “Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask,” Appl. Opt. 51(22), 5377–5386 (2012).
    [CrossRef] [PubMed]
  19. S. K. Rajput, N. K. Nishchal, “Image encryption based on interference that uses fractional Fourier domain asymmetric keys,” Appl. Opt. 51(10), 1446–1452 (2012).
    [CrossRef] [PubMed]
  20. X. Deng, D. Zhao, “Single-channel color image encryption based on asymmetric cryptosystem,” Opt. Laser Technol. 44(1), 136–140 (2012).
    [CrossRef]
  21. I. Mehra, S. K. Rajput, N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52(2), 028202 (2013).
    [CrossRef]
  22. S. Kishk, B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt. 41(26), 5462–5470 (2002).
    [CrossRef] [PubMed]
  23. N. Takai, Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41(5), 865–873 (2002).
    [CrossRef] [PubMed]
  24. Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
    [CrossRef]
  25. Y. Sheng, Z. Xin, M. S. Alam, L. Xi, L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009).
    [CrossRef] [PubMed]
  26. N. K. Nishchal, T. Pitkaaho, T. J. Naughton, “Digital Fresnel hologram watermarking” in Proceedings of 9th IEEE Euro-American Workshop on Information Optics, July 11–16, 2010, Helsinki, Finland.
  27. X. Wang, D. Zhao, “Optical image hiding with silhouette removal based on the optical interference principle,” Appl. Opt. 51(6), 686–691 (2012).
    [CrossRef] [PubMed]
  28. X. Wang, D. Zhao, “Double image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval,” Opt. Commun. 284(19), 4441–4445 (2011).
    [CrossRef]
  29. C. H. Chuang, Y. L. Chen, “Steganographic optical image encryption system based on reversible data hiding and double random phase encoding,” Opt. Eng. 52(2), 028201 (2013).
    [CrossRef]
  30. N. K. Nishchal, “Hierarchical encrypted image watermarking using fractional Fourier domain random phase encoding,” Opt. Eng. 50(9), 097003 (2011).
    [CrossRef]
  31. R. K. Young, Wavelet Theory and Its Applications. (Kluwer Academic, 1993).
  32. Y.-H. Seo, H.-J. Choi, D.-W. Kim, “Digital hologram encryption using discrete wavelet packet transform,” Opt. Commun. 282(3), 367–377 (2009).
    [CrossRef]
  33. P. P. Dang, P. M. Chau, “Image encryption for secure internet multimedia applications,” IEEE Trans. Consum. Electron. 46(3), 395–403 (2000).
    [CrossRef]
  34. K. Martin, R. Lukac, K. N. Plataniotis, “Efficient encryption of wavelet based coded color images,” Pattern Recognit. 38(7), 1111–1115 (2005).
    [CrossRef]
  35. L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
    [CrossRef]

2013

C. H. Chuang, Y. L. Chen, “Steganographic optical image encryption system based on reversible data hiding and double random phase encoding,” Opt. Eng. 52(2), 028201 (2013).
[CrossRef]

I. Mehra, S. K. Rajput, N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52(2), 028202 (2013).
[CrossRef]

L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
[CrossRef]

2012

2011

X. Deng, D. Zhao, “Single-channel color image encryption using a modified Gerchberg-Saxton algorithm and mutual encoding in the Fresnel domain,” Appl. Opt. 50(31), 6019–6025 (2011).
[CrossRef] [PubMed]

A. Alfalou, C. Brosseau, N. Abdallah, M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19(24), 24023–24029 (2011).
[CrossRef] [PubMed]

N. K. Nishchal, “Hierarchical encrypted image watermarking using fractional Fourier domain random phase encoding,” Opt. Eng. 50(9), 097003 (2011).
[CrossRef]

X. Wang, D. Zhao, “Double image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval,” Opt. Commun. 284(19), 4441–4445 (2011).
[CrossRef]

2010

2009

2007

M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
[CrossRef]

2006

B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
[CrossRef]

Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
[CrossRef]

L. Chen, D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14(19), 8552–8560 (2006).
[CrossRef] [PubMed]

2005

2002

2000

P. P. Dang, P. M. Chau, “Image encryption for secure internet multimedia applications,” IEEE Trans. Consum. Electron. 46(3), 395–403 (2000).
[CrossRef]

1999

S. Zhang, M. A. Karim, “Color image encryption using double random phase encoding,” Microw. Opt. Technol. Lett. 21(5), 318–323 (1999).
[CrossRef]

Abdallah, N.

Alam, M. S.

Alfalou, A.

Alfieri, D.

Bao, L.

L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
[CrossRef]

Brosseau, C.

Chandrashakher,

M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
[CrossRef]

Chau, P. M.

P. P. Dang, P. M. Chau, “Image encryption for secure internet multimedia applications,” IEEE Trans. Consum. Electron. 46(3), 395–403 (2000).
[CrossRef]

Chen, C. L. P.

L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
[CrossRef]

Chen, L.

Chen, Y. L.

C. H. Chuang, Y. L. Chen, “Steganographic optical image encryption system based on reversible data hiding and double random phase encoding,” Opt. Eng. 52(2), 028201 (2013).
[CrossRef]

Choi, G.

S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
[CrossRef]

Choi, H.-J.

Y.-H. Seo, H.-J. Choi, D.-W. Kim, “Digital hologram encryption using discrete wavelet packet transform,” Opt. Commun. 282(3), 367–377 (2009).
[CrossRef]

Chuang, C. H.

C. H. Chuang, Y. L. Chen, “Steganographic optical image encryption system based on reversible data hiding and double random phase encoding,” Opt. Eng. 52(2), 028201 (2013).
[CrossRef]

Dang, P. P.

P. P. Dang, P. M. Chau, “Image encryption for secure internet multimedia applications,” IEEE Trans. Consum. Electron. 46(3), 395–403 (2000).
[CrossRef]

De Nicola, S.

Deng, X.

Do, C. M.

B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
[CrossRef]

Ferraro, P.

Finizio, A.

Garzelli, A.

A. Garzelli, “Possibilities and limitations of the use of wavelets in image fusion” IEEE International Geoscience and Remote Sensing Symp.1, 66–68 (2002).
[CrossRef]

Hong, G.

G. Hong, Y. Zhang, “High resolution image fusion based on wavelet and HIS transformations” Proceedings of 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion99–104 (2003).

Hong, S.

S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
[CrossRef]

Hong, S. H.

B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
[CrossRef]

B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[CrossRef] [PubMed]

Hwang, H.-E.

H.-E. Hwang, “Optical color image encryption based on the wavelength multiplexing using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 285(5), 567–573 (2012).
[CrossRef]

Javidi, B.

Joshi, M.

M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
[CrossRef]

Jridi, M.

Karim, M. A.

S. Zhang, M. A. Karim, “Color image encryption using double random phase encoding,” Microw. Opt. Technol. Lett. 21(5), 318–323 (1999).
[CrossRef]

Kim, D.-W.

Y.-H. Seo, H.-J. Choi, D.-W. Kim, “Digital hologram encryption using discrete wavelet packet transform,” Opt. Commun. 282(3), 367–377 (2009).
[CrossRef]

Kishk, S.

Lukac, R.

K. Martin, R. Lukac, K. N. Plataniotis, “Efficient encryption of wavelet based coded color images,” Pattern Recognit. 38(7), 1111–1115 (2005).
[CrossRef]

Martin, K.

K. Martin, R. Lukac, K. N. Plataniotis, “Efficient encryption of wavelet based coded color images,” Pattern Recognit. 38(7), 1111–1115 (2005).
[CrossRef]

Mehra, I.

I. Mehra, S. K. Rajput, N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52(2), 028202 (2013).
[CrossRef]

Mifune, Y.

Moon, W. M.

S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
[CrossRef]

Naughton, T. J.

N. K. Nishchal, T. Pitkaaho, T. J. Naughton, “Digital Fresnel hologram watermarking” in Proceedings of 9th IEEE Euro-American Workshop on Information Optics, July 11–16, 2010, Helsinki, Finland.

Nishchal, N. K.

I. Mehra, S. K. Rajput, N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52(2), 028202 (2013).
[CrossRef]

S. K. Rajput, N. K. Nishchal, “Image encryption based on interference that uses fractional Fourier domain asymmetric keys,” Appl. Opt. 51(10), 1446–1452 (2012).
[CrossRef] [PubMed]

S. K. Rajput, N. K. Nishchal, “Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask,” Appl. Opt. 51(22), 5377–5386 (2012).
[CrossRef] [PubMed]

N. K. Nishchal, “Hierarchical encrypted image watermarking using fractional Fourier domain random phase encoding,” Opt. Eng. 50(9), 097003 (2011).
[CrossRef]

N. K. Nishchal, T. Pitkaaho, T. J. Naughton, “Digital Fresnel hologram watermarking” in Proceedings of 9th IEEE Euro-American Workshop on Information Optics, July 11–16, 2010, Helsinki, Finland.

Nomura, T.

B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
[CrossRef]

Paik, H.

S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
[CrossRef]

Peng, X.

Pierattini, G.

Pitkaaho, T.

N. K. Nishchal, T. Pitkaaho, T. J. Naughton, “Digital Fresnel hologram watermarking” in Proceedings of 9th IEEE Euro-American Workshop on Information Optics, July 11–16, 2010, Helsinki, Finland.

Plataniotis, K. N.

K. Martin, R. Lukac, K. N. Plataniotis, “Efficient encryption of wavelet based coded color images,” Pattern Recognit. 38(7), 1111–1115 (2005).
[CrossRef]

Qin, W.

Rajput, S. K.

Sadjadi, F.

F. Sadjadi, “Invariant algebra and the fusion of multi-spectral information,” Inf. Fusion 3(1), 39–50 (2002).
[CrossRef]

Seo, Y.-H.

Y.-H. Seo, H.-J. Choi, D.-W. Kim, “Digital hologram encryption using discrete wavelet packet transform,” Opt. Commun. 282(3), 367–377 (2009).
[CrossRef]

Sheng, Y.

Shi, Y.

Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
[CrossRef]

Singh, K.

M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
[CrossRef]

Situ, G.

Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
[CrossRef]

Takai, N.

Wang, X.

X. Wang, D. Zhao, “Optical image hiding with silhouette removal based on the optical interference principle,” Appl. Opt. 51(6), 686–691 (2012).
[CrossRef] [PubMed]

X. Wang, D. Zhao, “Double image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval,” Opt. Commun. 284(19), 4441–4445 (2011).
[CrossRef]

Xi, L.

Xiao-Feng, L.

Xin, Z.

Zhang, J.

Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
[CrossRef]

Zhang, S.

S. Zhang, M. A. Karim, “Color image encryption using double random phase encoding,” Microw. Opt. Technol. Lett. 21(5), 318–323 (1999).
[CrossRef]

Zhang, Y.

G. Hong, Y. Zhang, “High resolution image fusion based on wavelet and HIS transformations” Proceedings of 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion99–104 (2003).

Zhao, D.

Zhou, Y.

L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

IEEE Trans. Consum. Electron.

P. P. Dang, P. M. Chau, “Image encryption for secure internet multimedia applications,” IEEE Trans. Consum. Electron. 46(3), 395–403 (2000).
[CrossRef]

Inf. Fusion

F. Sadjadi, “Invariant algebra and the fusion of multi-spectral information,” Inf. Fusion 3(1), 39–50 (2002).
[CrossRef]

J. Disp. Technol.

B. Javidi, C. M. Do, S. H. Hong, T. Nomura, “Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform,” J. Disp. Technol. 2(4), 411–417 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

Y. Shi, G. Situ, J. Zhang, “Optical image hiding in the Fresnel domain,” J. Opt. A, Pure Appl. Opt. 8(6), 569–577 (2006).
[CrossRef]

Microw. Opt. Technol. Lett.

S. Zhang, M. A. Karim, “Color image encryption using double random phase encoding,” Microw. Opt. Technol. Lett. 21(5), 318–323 (1999).
[CrossRef]

Opt. Commun.

M. Joshi, Chandrashakher, K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279(1), 35–42 (2007).
[CrossRef]

H.-E. Hwang, “Optical color image encryption based on the wavelength multiplexing using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 285(5), 567–573 (2012).
[CrossRef]

X. Wang, D. Zhao, “Double image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval,” Opt. Commun. 284(19), 4441–4445 (2011).
[CrossRef]

Y.-H. Seo, H.-J. Choi, D.-W. Kim, “Digital hologram encryption using discrete wavelet packet transform,” Opt. Commun. 282(3), 367–377 (2009).
[CrossRef]

Opt. Eng.

I. Mehra, S. K. Rajput, N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52(2), 028202 (2013).
[CrossRef]

C. H. Chuang, Y. L. Chen, “Steganographic optical image encryption system based on reversible data hiding and double random phase encoding,” Opt. Eng. 52(2), 028201 (2013).
[CrossRef]

N. K. Nishchal, “Hierarchical encrypted image watermarking using fractional Fourier domain random phase encoding,” Opt. Eng. 50(9), 097003 (2011).
[CrossRef]

Opt. Express

Opt. Laser Technol.

X. Deng, D. Zhao, “Single-channel color image encryption based on asymmetric cryptosystem,” Opt. Laser Technol. 44(1), 136–140 (2012).
[CrossRef]

Opt. Lett.

Pattern Recognit.

K. Martin, R. Lukac, K. N. Plataniotis, “Efficient encryption of wavelet based coded color images,” Pattern Recognit. 38(7), 1111–1115 (2005).
[CrossRef]

Proc. SPIE

L. Bao, Y. Zhou, C. L. P. Chen, “Image encryption in the wavelet domain,” Proc. SPIE 8755, 875502 (2013).
[CrossRef]

Other

N. K. Nishchal, T. Pitkaaho, T. J. Naughton, “Digital Fresnel hologram watermarking” in Proceedings of 9th IEEE Euro-American Workshop on Information Optics, July 11–16, 2010, Helsinki, Finland.

R. K. Young, Wavelet Theory and Its Applications. (Kluwer Academic, 1993).

D. C. Tseng, Y. L. Chen, and M. S. C. Liu, “Wavelet based multispectral image fusion” in Proceedings of Geoscience and Remote Sensing Symposium (IGARSS), 4, 1956–1958 (2001).

B. Javidi, Optical and Digital Techniques for Information Security (Springer, 2005).

S. Hong, W. M. Moon, H. Paik, G. Choi, “Data fusion of multiple polarimetric SAR images using discrete wavelet transform” in Proceedings of IEEE Int. Geoscience and Remote Sensing Symp., 6, 3323–3325 (2002).
[CrossRef]

A. Garzelli, “Possibilities and limitations of the use of wavelets in image fusion” IEEE International Geoscience and Remote Sensing Symp.1, 66–68 (2002).
[CrossRef]

G. Hong, Y. Zhang, “High resolution image fusion based on wavelet and HIS transformations” Proceedings of 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion99–104 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Block diagram for asymmetric cryptosystem; (b) DWT based image encryption; and (c) decryption process.

Fig. 2
Fig. 2

(a) Input color of size 256 ☓ 256 pixels; (b) red component of colored image corresponding to λr = 632.8nm; (c) red component of colored image corresponding to λr + δλr = 631.8nm; (d) green component of colored image corresponding to λg = 532nm; (e) green component of colored image corresponding to λg + δλg = 531nm; (f) blue component of colored image corresponding to λb = 475nm; and (g) blue component of colored image corresponding to λb + δλb = 476nm.

Fig. 3
Fig. 3

(a)-(d) Four coefficients of DWT of reconstructed red component corresponding to wavelength, λr, (e)-(h) all four coefficients of DWT of reconstructed red component corresponding to wavelength λr + δλr.

Fig. 4
Fig. 4

(a)-(c) All three fused color components.

Fig. 5
Fig. 5

(a) Decryption key, kr(u,v) corresponding to red component; (b) corresponding encrypted image, Hr(u,v); (c) decryption key, kg(u,v) corresponding to green component; (d) corresponding encrypted image, Hg(u,v); (e) decryption key, kb(u,v) corresponding to blue component; (f) corresponding encrypted image, Hb(u,v).

Fig. 6
Fig. 6

(a)-(c) The three cover images,; (d)-(f) fusion for all three components; (g)-(i) the final cover images obtained after IDWT operation; (j) retrieved color image; and (k) specific attack result, mean square error (MSE) versus number of iterations.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

W ϕ ( m 0 , k ) = ( 1 L ) k f ( x ) ϕ m 0 , k
W ψ ( m , k ) = ( 1 L ) k f ( x ) ϕ m , k
W FLLr = AVG ( W LLr1 , W LLr2 )
W FHLr = AVG ( W HLr1 , W HLr2 )  
W FLHr = AVG ( W LHr1 , W LHr2 )  
W FHHr = AVG ( W HHr1 , W HHr2 )  
g ' r ( ψ , ϕ ) = { W FLLr , W FHLr , W FLHr , W FHHr }
g ' g ( ψ , ϕ ) = { W FLLg , W FHLg , W FLHg , W FHHg }
g ' b ( ψ , ϕ ) = { W FLLb , W FHLb , W FLHb , W FHHb }
H r ( u , v ) = P T { F r T z 1 [ g r ( ψ , ϕ ) × R 1 ( ψ , ϕ ) ] }
k r ( u , v ) = A T { F r T z 1 [ g r ( ψ , ϕ ) × R 1 ( ψ , ϕ ) ] }
H g ( u , v ) = P T { F r T z 2 [ g g ( ψ , ϕ ) × R 2 ( ψ , ϕ ) ] }
k g ( u , v ) = A T { F r T z 2 [ g g ( ψ , φ ) × R 2 ( ψ , φ ) ] }
H b ( u , v ) = P T { F r T z 3 [ g b ( ψ , φ ) × R 3 ( ψ , φ ) ] }
k b ( u , v ) = A T { F r T z 3 [ g b ( ψ , φ ) × R 3 ( ψ , φ ) ] }
m ' r ( ξ , η ) = IDWT ( W LLcr , W HLcr , W LHcr , H r / α r )
g r ( ψ , ϕ ) = P T { F r T z 2 [ H r ( u , v ) × k r ( u , v ) ] }
g g ( ψ , ϕ ) = P T { F r T z 2 [ H g ( u , v ) × k g ( u , v ) ] }
g b ( ψ , ϕ ) = P T { F r T z 2 [ H b ( u , v ) × k b ( u , v ) ] }
f r ( x , y ) = I D W T ( g r ( ψ , ϕ ) )
f g ( x , y ) = I D W T ( g g ( ψ , ϕ ) )
f b ( x , y ) = I D W T ( g b ( ψ , ϕ ) )
f ( x , y ) = f r ( x , y ) f g ( x , y ) f b ( x , y )

Metrics