Abstract

We propose a switching method for optical beaming generated from a metal slit surrounded by surface gratings. The principle of the method is based on the interference of diffracted surface plasmon polaritons from the gratings which are controlled by the relative phases of two oblique incident beams that are illuminated on the metal slit. By adjusting the relative position of the interference pattern of the incident beams with respect to the metal slit, beaming from the proposed structure can be switched from the on- to the off-mode by virtue of the change in the symmetry of the generated surface plasmon polaritons. An experimental demonstration of the method is presented in which an electrically controlled interferometric configuration is used.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. H. Raether, Surface Plasmons on Smooth Surfaces (Springer-Verlag, 1988).
  4. B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
    [CrossRef]
  5. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
    [CrossRef]
  6. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [CrossRef]
  7. D. Choi, I.-M. Lee, J. Jung, J. Park, J.-H. Han, B. Lee, “Metallic-grating-based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
    [CrossRef]
  8. A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  10. S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
    [CrossRef]
  11. F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
    [CrossRef]
  12. Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
    [CrossRef]
  13. H. Kim, J. Park, B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
    [CrossRef] [PubMed]
  14. E.-Y. Song, H. Kim, W. Y. Choi, B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013).
    [CrossRef] [PubMed]
  15. Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
    [CrossRef] [PubMed]
  16. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  17. S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010).
    [CrossRef]
  18. S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
    [CrossRef] [PubMed]
  19. S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
    [CrossRef] [PubMed]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  21. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  22. H. Kim, I. M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [CrossRef] [PubMed]
  23. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Application in Computational Nanophotonics (CRC Press, 2012).
  24. T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
    [CrossRef]
  25. S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
    [CrossRef]
  26. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  28. D. A. Pommet, E. B. Grann, M. G. Moharam, “Effects of process errors on the diffraction characteristics of binary dielectric gratings,” Appl. Opt. 34(14), 2430–2435 (1995).
    [CrossRef] [PubMed]
  29. D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [CrossRef]

2013 (4)

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[CrossRef] [PubMed]

E.-Y. Song, H. Kim, W. Y. Choi, B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013).
[CrossRef] [PubMed]

2012 (2)

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

2011 (2)

F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[CrossRef] [PubMed]

2010 (3)

S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010).
[CrossRef]

B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

2009 (3)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

H. Kim, J. Park, B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
[CrossRef] [PubMed]

D. Choi, I.-M. Lee, J. Jung, J. Park, J.-H. Han, B. Lee, “Metallic-grating-based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

2007 (3)

H. Kim, I. M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

2005 (1)

2004 (1)

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1995 (3)

Alù, A.

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[CrossRef] [PubMed]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Cho, S.-W.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

Choi, D.

Choi, W. Y.

Chung, T.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dong, X.

Du, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbessen, T. W.

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Gao, H.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Grann, E. B.

Han, J.-H.

Hao, F.

F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[CrossRef]

Hesselink, L.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

Hoshino, K.

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[CrossRef] [PubMed]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Hwang, C.-Y.

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Jung, J.

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Kim, H.

Kim, J.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

Kim, K.-Y.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

Kim, S.

S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010).
[CrossRef]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lee, B.

E.-Y. Song, H. Kim, W. Y. Choi, B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013).
[CrossRef] [PubMed]

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[CrossRef] [PubMed]

S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010).
[CrossRef]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

H. Kim, J. Park, B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009).
[CrossRef] [PubMed]

D. Choi, I.-M. Lee, J. Jung, J. Park, J.-H. Han, B. Lee, “Metallic-grating-based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

H. Kim, I. M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Lee, I. M.

Lee, I.-M.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[CrossRef] [PubMed]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

D. Choi, I.-M. Lee, J. Jung, J. Park, J.-H. Han, B. Lee, “Metallic-grating-based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

Lee, S.-Y.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[CrossRef] [PubMed]

Lee, W.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

Lee, Y.

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[CrossRef] [PubMed]

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lim, Y.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Luo, X.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Moharam, M. G.

Oh, D.-H.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

Oh, S.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Park, J.

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Pommet, D. A.

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Shi, H.

Song, E.-Y.

Thio, T.

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wang, C.

Wang, J.

F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[CrossRef]

Wang, R.

F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[CrossRef]

Wolff, P. A.

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Won, J.-Y.

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

Yang, X. M.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Yun, H.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

Zhang, X. J.

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[CrossRef] [PubMed]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[CrossRef]

IEEE Access (1)

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013).
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

J. Opt. (1)

F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[CrossRef]

J. Opt. Soc. Am. A (3)

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013).
[CrossRef]

Nat. Photonics (2)

D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Nature (2)

T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth Surfaces (Springer-Verlag, 1988).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Application in Computational Nanophotonics (CRC Press, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a switchable beaming structure is shown when two oblique incident beams that illuminate the metal slit are (a) in phase and (b) out of phase, respectively. Red-solid and blue-dotted arrows denote the direction of electric fields caused by right- and left-side coupled SPPs. The images represented in (c) and (d) show the Ex field distribution for each case of (a) and (b), respectively.

Fig. 2
Fig. 2

Calculated intensities for the on-mode case at x = 0 μm and z = 10 μm for N grooves surrounding a central slit according to the height of grating are presented.

Fig. 3
Fig. 3

The intensity values of a generated beam for on-mode (solid line) and off-mode (dotted line) cases at x = 0 μm and z = 10 μm according to the length of offset and the fill factor are presented.

Fig. 4
Fig. 4

Diffraction field distribution of (a) on- and (b) off-mode beam generated from the proposed structure, respectively, with w = 540 nm, t = 300 nm, h = 100nm, N = 6, Λ = 500 nm, los = 250nm, f = 0.5 and θin = 31.74°. (c) Angular distribution of transmitted power for on-mode (blue solid line) and off-mode (red dotted line) cases are shown respectively, with the same conditions as (a) and (b).

Fig. 5
Fig. 5

(a) Schematic diagram of the optical setup to measure the switchable beaming. M1, M2, M3 and M4 are mirrors. (b) Optical path in the prism. (c) SEM image of sample which is fabricated by FIB.

Fig. 6
Fig. 6

(a) Captured CCD images for the on-mode and off-mode cases as a function of the voltage applied to the piezo stage. (b) Comparison of the intensity of the on-mode (blue solid line) and off-mode (red dotted line)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ diff = λ λ sp ( 1 m λ sp Λ ) ,
θ in = ( π θ p 2 ) sin 1 ( sin ( π θ p / 2 ) n SiO 2 ) ,
d = ( l s + l p ) / ( 1 tan θ in + 1 tan ( θ p / 2 ) ) .

Metrics