L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[Crossref]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[Crossref]
[PubMed]

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

E. J. Candes and C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

E. J. Candes and C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[Crossref]
[PubMed]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

L. Li and F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[Crossref]
[PubMed]

L. Li and F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[Crossref]
[PubMed]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[Crossref]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[Crossref]
[PubMed]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[Crossref]
[PubMed]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[Crossref]
[PubMed]

A. M. H. Wong and G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[Crossref]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[Crossref]
[PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[Crossref]
[PubMed]

L. Li and F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[Crossref]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[Crossref]
[PubMed]

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

E. J. Candes and C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).

L. Li, X. Xu, and F. Li, “Towards super-resolution microwave imaging: general framework,” 10th International Symposium On Antenna, Propagation & EM Theory (2012).

[Crossref]