Abstract

We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10−3bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication

Heng Qin, Yong Zuo, Dong Zhang, Yinghui Li, and Jian Wu
Opt. Express 25(5) 5018-5030 (2017)

Optical Front-End for Soft-Decision LDPC Codes in Optical Communication Systems

M. N. Sakib, V. Mahalingam, W. J. Gross, and O. Liboiron-Ladouceur
J. Opt. Commun. Netw. 3(6) 533-541 (2011)

Research on channel-related polar code with an optimum code length for wireless ultraviolet communications

Wenxiu Hu, Min Zhang, Dahai Han, Qingbo Chen, Lin Ai, Qing Li, and Zabih Ghassemlooy
Opt. Express 25(23) 28630-28642 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17(2), 872–887 (2009).
    [Crossref] [PubMed]
  2. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [Crossref] [PubMed]
  3. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
    [Crossref]
  4. G. Chen, Z. Xu, H. Ding, and B. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [Crossref] [PubMed]
  5. Y. Tang and G.-Q. Ni, “Study of channel character of solar blind UV communication,” Proc. SPIE 6622, 6620 (2008).
  6. A. Joseph, “Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4km free-space optical communication experiment,” Proc. SPIE 7464, 33 (2009).
  7. L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
    [Crossref]
  8. W. Li, N. Qunfeng, and Z. He, “Wireless Communications Link with RS Channel Code for Setting Electronic Fuze,” in Computing, Communication, Control, and Management, 2008 CCCM '08 ISECS International Colloquium (2008), pp. 398–402.
  9. R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory 8(1), 21–28 (1962).
    [Crossref]
  10. L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
    [Crossref]
  11. T. C. Barbosa, R. L. Moreno, and T. C. Pereira, “FPGA implementation of a Reed-Solomon CODEC for OTN G.709 standard with reduced decoder area,” in 6th International Conference on WiCOM, Chengdu, China (2010).
    [Crossref]
  12. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
    [Crossref]
  13. D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45(2), 399–431 (1999).
    [Crossref]
  14. Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes: construction based on finite geometries,” in Global Telecommunications Conference, GLOBECOM '00 IEEE2000 (2000), Vol. 2, pp. 825–829.
    [Crossref]
  15. B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).
  16. IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. IEEE Std P802.16e/D12 (2005).
  17. Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
    [Crossref]
  18. M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
    [Crossref]
  19. E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
    [Crossref]
  20. J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithm of LDPC codes,” IEEE Trans. Commun. 6(5), 208–210 (2002).
    [Crossref]
  21. D. Han, X. Fan, K. Zhang, and R. Zhu, “Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication,” Appl. Opt. 52(22), 5516–5522 (2013).
    [Crossref] [PubMed]
  22. P. Luo, M. Zhang, D. Han, and Q. Li, “Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters,” Opt. Express 20(21), 23489–23501 (2012).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2010 (1)

2009 (3)

2008 (3)

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

Y. Tang and G.-Q. Ni, “Study of channel character of solar blind UV communication,” Proc. SPIE 6622, 6620 (2008).

2006 (2)

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
[Crossref]

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

2002 (2)

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).

J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithm of LDPC codes,” IEEE Trans. Commun. 6(5), 208–210 (2002).
[Crossref]

2001 (1)

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
[Crossref]

1999 (2)

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
[Crossref]

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45(2), 399–431 (1999).
[Crossref]

1996 (1)

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
[Crossref]

1962 (1)

R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory 8(1), 21–28 (1962).
[Crossref]

Barbosa, T. C.

T. C. Barbosa, R. L. Moreno, and T. C. Pereira, “FPGA implementation of a Reed-Solomon CODEC for OTN G.709 standard with reduced decoder area,” in 6th International Conference on WiCOM, Chengdu, China (2010).
[Crossref]

Bourennane, S.

Cai, Z.

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

Caussé, P.

Chang, L.

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

Chen, G.

Chen, J.

J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithm of LDPC codes,” IEEE Trans. Commun. 6(5), 208–210 (2002).
[Crossref]

Chin, P. S.

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

Dholakia, A.

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
[Crossref]

Ding, H.

Eleftheriou, E.

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
[Crossref]

Fan, X.

Fossorier, M. P. C.

J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithm of LDPC codes,” IEEE Trans. Commun. 6(5), 208–210 (2002).
[Crossref]

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
[Crossref]

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes: construction based on finite geometries,” in Global Telecommunications Conference, GLOBECOM '00 IEEE2000 (2000), Vol. 2, pp. 825–829.
[Crossref]

Gallager, R. G.

R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory 8(1), 21–28 (1962).
[Crossref]

Hagenauer, J.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
[Crossref]

Han, D.

Hao, J.

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

Imai, H.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
[Crossref]

Joseph, A.

A. Joseph, “Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4km free-space optical communication experiment,” Proc. SPIE 7464, 33 (2009).

Khalighi, A.

Kou, Y.

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes: construction based on finite geometries,” in Global Telecommunications Conference, GLOBECOM '00 IEEE2000 (2000), Vol. 2, pp. 825–829.
[Crossref]

Kurtas, E. M.

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).

Kuznetsov, A. V.

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).

Li, Q.

Lin, S.

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes: construction based on finite geometries,” in Global Telecommunications Conference, GLOBECOM '00 IEEE2000 (2000), Vol. 2, pp. 825–829.
[Crossref]

Luo, P.

MacKay, D. J. C.

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45(2), 399–431 (1999).
[Crossref]

Mihaljevic, M.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
[Crossref]

Mittelholzer, T.

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
[Crossref]

Model, J.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
[Crossref]

Moreno, R. L.

T. C. Barbosa, R. L. Moreno, and T. C. Pereira, “FPGA implementation of a Reed-Solomon CODEC for OTN G.709 standard with reduced decoder area,” in 6th International Conference on WiCOM, Chengdu, China (2010).
[Crossref]

Ni, G.-Q.

Y. Tang and G.-Q. Ni, “Study of channel character of solar blind UV communication,” Proc. SPIE 6622, 6620 (2008).

Offer, E.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
[Crossref]

Papke, L.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
[Crossref]

Pereira, T. C.

T. C. Barbosa, R. L. Moreno, and T. C. Pereira, “FPGA implementation of a Reed-Solomon CODEC for OTN G.709 standard with reduced decoder area,” in 6th International Conference on WiCOM, Chengdu, China (2010).
[Crossref]

Sadler, B.

Sadler, B. M.

Shaw, G. A.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
[Crossref]

Siegel, A. M.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
[Crossref]

Song, L.

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

Sun, S.

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

Tan, P. H.

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

Tang, Y.

Y. Tang and G.-Q. Ni, “Study of channel character of solar blind UV communication,” Proc. SPIE 6622, 6620 (2008).

Vasic, B.

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).

Xu, F.

Xu, Z.

Zhang, K.

Zhang, L.

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

Zhang, M.

Zhu, R.

Appl. Opt. (1)

Electron. Lett. (2)

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” Electron. Lett. 37(2), 102–104 (2001).
[Crossref]

Z. Cai, J. Hao, P. H. Tan, S. Sun, and P. S. Chin, “Efficient encoding of IEEE 802.11n in LDPC codes,” Electron. Lett. 42(25), 1471–1472 (2006).
[Crossref]

IEEE Trans. Commun. (2)

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun. 47(5), 673–680 (1999).
[Crossref]

J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithm of LDPC codes,” IEEE Trans. Commun. 6(5), 208–210 (2002).
[Crossref]

IEEE Trans. Inf. Theory (3)

R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory 8(1), 21–28 (1962).
[Crossref]

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42(2), 429–445 (1996).
[Crossref]

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45(2), 399–431 (1999).
[Crossref]

IEEE Trans. Magnetics (1)

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “Kirkman systems and their application in perpendicular magnetic recording,” IEEE Trans. Magnetics 38, 1705–1710 (2002).

Opt. Express (4)

Proc. SPIE (5)

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

Y. Tang and G.-Q. Ni, “Study of channel character of solar blind UV communication,” Proc. SPIE 6622, 6620 (2008).

A. Joseph, “Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4km free-space optical communication experiment,” Proc. SPIE 7464, 33 (2009).

L. Chang, L. Song, and L. Zhang, “Design and realization of FEC-based RS code in the atmospheric laser communication system,” Proc. SPIE 7160, 716038 (2008).
[Crossref]

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 2310 (2006).
[Crossref]

Other (4)

W. Li, N. Qunfeng, and Z. He, “Wireless Communications Link with RS Channel Code for Setting Electronic Fuze,” in Computing, Communication, Control, and Management, 2008 CCCM '08 ISECS International Colloquium (2008), pp. 398–402.

T. C. Barbosa, R. L. Moreno, and T. C. Pereira, “FPGA implementation of a Reed-Solomon CODEC for OTN G.709 standard with reduced decoder area,” in 6th International Conference on WiCOM, Chengdu, China (2010).
[Crossref]

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes: construction based on finite geometries,” in Global Telecommunications Conference, GLOBECOM '00 IEEE2000 (2000), Vol. 2, pp. 825–829.
[Crossref]

IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. IEEE Std P802.16e/D12 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Basic structure of the UV communication system.
Fig. 2
Fig. 2 Encoding process of the RS (18, 10) code.
Fig. 3
Fig. 3 Decoding process of RS (18, 10) code.
Fig. 4
Fig. 4 The base check matrix employed in the UVC system (z = 40, bit rate = 1/2).
Fig. 5
Fig. 5 The impact of offset factor β on OMS decoding performance at different SNR.
Fig. 6
Fig. 6 Simulation and experiment results of the LDPC code with the elevation angle of 10°~10°.
Fig. 7
Fig. 7 Structure of the FEC code test bed in the UV channel.
Fig. 8
Fig. 8 Elevation angles set up of Tx and Rx.
Fig. 9
Fig. 9 Experimental results of the LDPC and RS codes with different angles. (a) 0°~0° (BER = 0 with the LDPC code). (b) 10°~10°. (c) 20°~20°. (d) 30°~30°.

Tables (1)

Tables Icon

Table 1 Measured UVC System Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( x ) = x 8 + x 4 + x 3 + x 2 + 1 or x 8 = x 4 + x 3 + x 2 + 1.
g ( x ) = x 8 + 227 x 7 + 44 x 6 + 178 x 5 + 71 x 4 + 172 x 3 + 8 x 2 + 224 x + 37.

Metrics