Abstract

In this paper, we experimentally demonstrate enhanced optical transmission through a seamless gold film based on the grating-insulator-metal (GIM) architecture. The transmittance of this GIM structure reaches 40% at 930 nm, showing 3.7 dB and 9.1 dB increase compared with a bare gold film and a continuous metal-insulator-metal stack, respectively. The enhanced transmission is polarization-sensitive and robust for oblique incidence. With tunable transmission peaks, such a device exhibits great potential for applications in optical filtering, polarization detecting and further integration in optoelectronics system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  5. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  6. T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
    [CrossRef] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  8. M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
    [CrossRef]
  9. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  10. A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  11. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
    [CrossRef] [PubMed]
  12. J. Hao, C. W. Qiu, M. Qiu, S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
    [CrossRef] [PubMed]
  13. L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
    [CrossRef] [PubMed]
  14. Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
    [CrossRef]
  15. Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
    [CrossRef] [PubMed]
  16. D. Nazarova, B. Mednikarov, P. Sharlandjiev, “Resonant optical transmission from a one-dimensional relief metalized subwavelength grating,” Appl. Opt. 46(34), 8250–8255 (2007).
    [CrossRef] [PubMed]
  17. B. K. Singh, A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
    [CrossRef] [PubMed]
  18. D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).
  19. D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
    [CrossRef]
  20. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  21. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [CrossRef]

2013

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

2012

2011

A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

2010

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

2008

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

B. K. Singh, A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[CrossRef] [PubMed]

2007

2005

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1972

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Atwater, H. A.

A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Boltasseva, A.

A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Cai, Z.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Chen, Y.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Chen, Y. H.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Connor, S. T.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Cui, Y.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fu, G. L.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Genet, C.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gong, H.

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

Guo, L. J.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Hao, J.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Hillier, A. C.

B. K. Singh, A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[CrossRef] [PubMed]

Hu, Y.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Huang, K.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kang, M. G.

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kim, J.

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kim, M. S.

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kim, S. H.

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, H. S.

Lee, J. Y.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Lee, K. D.

Lee, S. S.

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, Q.

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

Liu, G.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Liu, G. Q.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Liu, X. S.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Liu, Z. Q.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Luo, X.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

Mednikarov, B.

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Nazarova, D.

Nazarova, D. I.

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

Nedelchev, L. L.

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Peumans, P.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Qiu, C. W.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[CrossRef] [PubMed]

Qiu, M.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

J. Hao, C. W. Qiu, M. Qiu, S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Sharlandjiev, P.

Sharlandjiev, P. S.

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Singh, B. K.

B. K. Singh, A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[CrossRef] [PubMed]

Spinelli, P.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Todorov, R. N.

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Wu, Y. K.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

Xu, T.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

Yang, Y.

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

Ye, H.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Yeo, S. P.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Yoon, Y. T.

Zhang, L.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, D.

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

Zhou, H. Q.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Zouhdi, S.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[CrossRef] [PubMed]

Adv. Mater.

M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Anal. Chem.

B. K. Singh, A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

D. Zhao, H. Gong, Y. Yang, Q. Li, M. Qiu, “Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures,” Appl. Phys. Lett. 102(20), 201109 (2013).
[CrossRef]

Bulg. Chem. Comm.

D. I. Nazarova, L. L. Nedelchev, R. N. Todorov, P. S. Sharlandjiev, “Surface plasmon-polariton resonances in metal-coated polycarbonate gratings,” Bulg. Chem. Comm. 45(B), 124–128 (2013).

IEEE Photon. Technol. Lett.

Z. Liu, G. Liu, K. Huang, Y. Chen, Y. Hu, X. Zhang, Z. Cai, “Enhanced optical transmission of a continuous metal film with double metal cylinder arrays,” IEEE Photon. Technol. Lett. 25(12), 1157–1160 (2013).
[CrossRef]

Nano Lett.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Nanoscale

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Nanotechnology

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[CrossRef] [PubMed]

Nat Commun

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(5), 59 (2010).
[CrossRef] [PubMed]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of (a) GIM, (b) MIM and IM samples. (c) and (d) show the top view and side view of the GIM sample etched by FIB, respectively. Scale bars are 300 nm.

Fig. 2
Fig. 2

Transmission of the designed structure as a function of wavelength in comparison of experiment and simulation results under (a) TM and (b) TE mode.

Fig. 3
Fig. 3

(a) Transmission enhancement ratios of GIM to MIM and IM. The vertical black dashed line indicates the position of resonant wavelength. (b) The normalized magnetic field maps for GIM and MIM devices at 930 nm. (c) Magnetic field maps where the maximum of the color bar is half of that in (b) so that the resonance in GIM is saturated and the transmission can be clearly seen.

Fig. 4
Fig. 4

Transmission spectra of GIM according to incident angle θ in a case of oblique incidence where the magnetic field is always parallel to the x axis.

Fig. 5
Fig. 5

Variation of transmission spectra toward different geometric parameters.

Metrics