Abstract

Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-contact, non-invasive, direct assessment of the elastic properties of materials. However, strong elastic scattering and stray light from various sources often contaminate the Brillouin spectrum. A molecular absorption cell was introduced into the virtually imaged phased array (VIPA) based Brillouin spectroscopy setup to absorb the Rayleigh component, which resulted in a substantial improvement of the Brillouin spectrum quality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).
  2. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  3. G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
    [CrossRef]
  4. K. J. Koski, J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
    [CrossRef]
  5. M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
    [CrossRef]
  6. O. Stachs, S. Reiss, R. Guthoff, and H. Stolz, “Spatially-resolved Brillouin spectroscopy for in vivo determination of the biomechanical properties of crystalline lenses,” in Ophthalmic Technologies Xxii, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, 2012).
  7. G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [CrossRef] [PubMed]
  8. V. J. Robertson, K. G. Baker, “A review of therapeutic ultrasound: effectiveness studies,” Phys. Ther. 81(7), 1339–1350 (2001).
    [PubMed]
  9. D. W. Ball, “Photoacoustic Spectroscopy,” Spectroscopy 21, 14 (2006).
  10. S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
    [CrossRef] [PubMed]
  11. D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
    [CrossRef] [PubMed]
  12. M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).
  13. G. Scarcelli, S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [CrossRef] [PubMed]
  14. G. Scarcelli, S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [CrossRef] [PubMed]
  15. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19(3), 234–236 (1994).
    [CrossRef] [PubMed]
  16. J. Simmons and J. Hougen, “Atlas of the l2 Spectrum from 19 000 to 18 000 cm−1,” J. Res. Natl. Inst. Stan. A Phys. Chem. 81A, 80 (1977).
  17. G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
    [CrossRef]
  18. P. Schoen, D. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. E Sci. Instrum. 5(6), 519–521 (1972).
    [CrossRef]
  19. K. F. Wall, R. K. Chang, “Separation of the low-frequency mode from the inelastic continuum scattering of a SERS active electrode,” Chem. Phys. Lett. 129(2), 144–148 (1986).
    [CrossRef]
  20. P. J. Horoyski, M. L. W. Thewalt, “Fourier transform Raman and Brillouin Spectroscopy using atomic vapor filters,” Appl. Spectrosc. 48(7), 843–847 (1994).
    [CrossRef]
  21. A. E. Siegman, Lasers (University Science Books, 1986).
  22. V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
    [CrossRef]
  23. P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
    [CrossRef]
  24. A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” in Mechanical and Aerospace Engineering (Princeton University, Princeton, NJ, 2000).
  25. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
    [CrossRef]

2012 (1)

G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[CrossRef] [PubMed]

2011 (1)

2009 (1)

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Scarcelli, S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

2006 (1)

D. W. Ball, “Photoacoustic Spectroscopy,” Spectroscopy 21, 14 (2006).

2005 (2)

K. J. Koski, J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

2004 (1)

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

2001 (1)

V. J. Robertson, K. G. Baker, “A review of therapeutic ultrasound: effectiveness studies,” Phys. Ther. 81(7), 1339–1350 (2001).
[PubMed]

1999 (1)

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

1998 (1)

V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
[CrossRef]

1994 (2)

1991 (2)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

1986 (1)

K. F. Wall, R. K. Chang, “Separation of the low-frequency mode from the inelastic continuum scattering of a SERS active electrode,” Chem. Phys. Lett. 129(2), 144–148 (1986).
[CrossRef]

1972 (1)

P. Schoen, D. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. E Sci. Instrum. 5(6), 519–521 (1972).
[CrossRef]

1971 (1)

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Baker, K. G.

V. J. Robertson, K. G. Baker, “A review of therapeutic ultrasound: effectiveness studies,” Phys. Ther. 81(7), 1339–1350 (2001).
[PubMed]

Ball, D. W.

D. W. Ball, “Photoacoustic Spectroscopy,” Spectroscopy 21, 14 (2006).

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Carnes, M.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Chang, R. K.

K. F. Wall, R. K. Chang, “Separation of the low-frequency mode from the inelastic continuum scattering of a SERS active electrode,” Chem. Phys. Lett. 129(2), 144–148 (1986).
[CrossRef]

Chase, L.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

Chauhan, S.

V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
[CrossRef]

Cross, S. E.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Davis, J. L.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

Devlin, G. E.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

Discher, D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Dong, C.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Eloranta, E. W.

Fratzl, P.

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

Fredberg, J. J.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Fry, E. S.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Gautam, R.

V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
[CrossRef]

Geschwind, S.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

Gimzewski, J. K.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Glorieoux, C.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Guilak, F.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Gupta, H.

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

Harding, J. M.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Hickman, G. D.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Horoyski, P. J.

Ingber, D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Jackson, D.

P. Schoen, D. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. E Sci. Instrum. 5(6), 519–521 (1972).
[CrossRef]

Janmey, P.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Jin, Y.-S.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Kamm, R. D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Karvankova, P.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Kattawar, G. W.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Koski, K. J.

K. J. Koski, J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

Manghnani, M. H.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Paschalis, E.

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

Piironen, P.

Pineda, R.

G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[CrossRef] [PubMed]

Pressman, A.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Rao, J.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Robertson, V. J.

V. J. Robertson, K. G. Baker, “A review of therapeutic ultrasound: effectiveness studies,” Phys. Ther. 81(7), 1339–1350 (2001).
[PubMed]

Roschger, P.

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

Scarcelli, G.

G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[CrossRef] [PubMed]

G. Scarcelli, S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[CrossRef] [PubMed]

G. Scarcelli, S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Schmid-Schönbein, G. W.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Schoen, P.

P. Schoen, D. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. E Sci. Instrum. 5(6), 519–521 (1972).
[CrossRef]

Shirasaki, M.

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

Syal, V.

V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
[CrossRef]

Thewalt, M. L. W.

Tkachev, S. N.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Tondre, J.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Veprek, S.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Wall, K. F.

K. F. Wall, R. K. Chang, “Separation of the low-frequency mode from the inelastic continuum scattering of a SERS active electrode,” Chem. Phys. Lett. 129(2), 144–148 (1986).
[CrossRef]

Weinbaum, S.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Wong, R.

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Yarger, J. L.

K. J. Koski, J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

Yun, S. H.

G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[CrossRef] [PubMed]

G. Scarcelli, S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[CrossRef] [PubMed]

G. Scarcelli, S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Zinin, P. V.

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

Ann. Biomed. Eng. (1)

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[CrossRef] [PubMed]

Ann. Phys. (Paris) (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Appl. Phys. Lett. (2)

K. J. Koski, J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular i2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19(5), 138–141 (1971).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

K. F. Wall, R. K. Chang, “Separation of the low-frequency mode from the inelastic continuum scattering of a SERS active electrode,” Chem. Phys. Lett. 129(2), 144–148 (1986).
[CrossRef]

Fujitsu Sci. Tech. J. (1)

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

Invest. Ophthalmol. Vis. Sci. (1)

G. Scarcelli, R. Pineda, S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, “Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering,” J. Appl. Phys. 97(5), 054308 (2005).
[CrossRef]

J. Mater. Chem. (1)

P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, “Structure and mechanical quality of the collagen–mineral nano-composite in bone,” J. Mater. Chem. 14(14), 2115–2123 (2004).
[CrossRef]

J. Phys. E Sci. Instrum. (1)

P. Schoen, D. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. E Sci. Instrum. 5(6), 519–521 (1972).
[CrossRef]

Nanotechnology (1)

S. E. Cross, Y.-S. Jin, J. Tondre, R. Wong, J. Rao, J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology 19(38), 384003 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

G. Scarcelli, S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Ther. (1)

V. J. Robertson, K. G. Baker, “A review of therapeutic ultrasound: effectiveness studies,” Phys. Ther. 81(7), 1339–1350 (2001).
[PubMed]

Remote Sens. Environ. (1)

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Spectroscopy (1)

D. W. Ball, “Photoacoustic Spectroscopy,” Spectroscopy 21, 14 (2006).

Ultrasonics (1)

V. Syal, S. Chauhan, R. Gautam, “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO + H2O at 25° C,” Ultrasonics 36(1-5), 619–623 (1998).
[CrossRef]

Other (5)

A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” in Mechanical and Aerospace Engineering (Princeton University, Princeton, NJ, 2000).

O. Stachs, S. Reiss, R. Guthoff, and H. Stolz, “Spatially-resolved Brillouin spectroscopy for in vivo determination of the biomechanical properties of crystalline lenses,” in Ophthalmic Technologies Xxii, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, 2012).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

J. Simmons and J. Hougen, “Atlas of the l2 Spectrum from 19 000 to 18 000 cm−1,” J. Res. Natl. Inst. Stan. A Phys. Chem. 81A, 80 (1977).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of the experimental setup. (b) A more detailed illustration for the 2-stage VIPA spectrometer. (c) (Top) A conceptual diagram showing the working principle of a molecular absorption notch filter; here the absorption band suppresses the Rayleigh scattered light, where “S” and “AS” denote the Stokes and anti-Stokes components, respectively; (Bottom) the measured extinction of the iodine cell as a function of temperature.

Fig. 2
Fig. 2

(a) The CCD image of the VIPA spectrometer for acetone, without the iodine cell (35 mW, 20 sec); (b) The CCD image for acetone, with the iodine cell heated at 60 °C (35 mW, 20 sec); (c) Quantatitive pixel readings within the blue box shown in (b); (d) Contour plot of the same data in (b). The data plotted in (c) are indicated with arrows.

Fig. 3
Fig. 3

(a) Pure DMSO (right) and DMSO with 4 μL coffee cream (left). (b, c) The CCD readings of the 2-stage VIPA spectrometer with (b) and without (c) the iodine cell. (d) The signal ratio between elastically scattered and Brillouin scattered components.

Fig. 4
Fig. 4

(a-b) The CCD image of the single-stage VIPA spectrometer for pure DMSO; the Brillouin shift is 8.320 ± 0.008 GHz, with a linewidth (FWHM) of 1.745 ± 0.035 GHz. (c) The single-stage VIPA spectrum for the DMSO solution with added scatterers.

Metrics