Abstract

We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer, 1988).
  2. A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [CrossRef]
  3. S. C. Tidwell, J. F. Seamans, M. S. Bowers, “Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser,” Opt. Lett. 18(2), 116–118 (1993).
    [CrossRef] [PubMed]
  4. X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
    [CrossRef]
  5. W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  6. M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, S. Karsch, “High-energy, diode-pumped, nanosecond Yb:YAG MOPA system,” Opt. Express 16(6), 3674–3679 (2008).
    [CrossRef] [PubMed]
  7. S. Basu, R. L. Byer, “Average power limits of diode-laser-pumped solid state lasers,” Appl. Opt. 29(12), 1765–1771 (1990).
    [CrossRef] [PubMed]
  8. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [CrossRef]
  9. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).
  10. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
    [CrossRef]
  11. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
    [CrossRef]
  12. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
    [CrossRef]
  13. A. Pirri, D. Alderighi, G. Toci, M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [CrossRef] [PubMed]
  14. A. Lapucci, M. Ciofini, M. Vannoni, A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power,” Appl. Opt. 51(18), 4224–4231 (2012).
    [CrossRef] [PubMed]
  15. N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).
  16. D. Kracht, R. Wilhelm, M. Frede, K. Dupré, L. Ackermann, “407 W end-pumped multi-segmented Nd:YAG laser,” Opt. Express 13(25), 10140–10144 (2005).
    [CrossRef] [PubMed]
  17. T. Kamimura, T. Okamoto, Y. L. Aung, and A. Ikesue, “Ceramic YAG composite with Nd gradient structure for homogeneous absorption of pump power,” in Conference on Lasers and Electro-Optics (CLEO) OSA Technical Digest Series (CD) (2007), paper CThT6.
    [CrossRef]
  18. Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
    [CrossRef]
  19. F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
    [CrossRef]
  20. L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
    [CrossRef]
  21. W. Koechner, “Transient thermal profiles in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
    [CrossRef]
  22. W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG: Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [CrossRef]
  23. S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  24. A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).
  25. COSMOS M, Design Star Product, Structural Research and Analysis Corp. – (User’s Guide and Tutorial), www.cosmosm.com , Los Angeles (2001).
  26. G. Toci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, and M. Vannini are preparing a manuscript to be called “Experimental measurement of the thermal lens effect and birefringence in Yb:YAG ceramics with layered structure.”
  27. A. Lucianetti, D. Albach, J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
    [CrossRef] [PubMed]
  28. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
    [CrossRef]
  29. R. Paschotta, Encyclopedia of Laser Physics and Technology (John Wiley, 2008).
  30. M. Born and E. Wolf, Principles of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  31. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
    [CrossRef] [PubMed]
  32. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
    [CrossRef] [PubMed]

2013

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

2012

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[CrossRef]

A. Lapucci, M. Ciofini, M. Vannoni, A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power,” Appl. Opt. 51(18), 4224–4231 (2012).
[CrossRef] [PubMed]

2011

2010

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

2009

2008

M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, S. Karsch, “High-energy, diode-pumped, nanosecond Yb:YAG MOPA system,” Opt. Express 16(6), 3674–3679 (2008).
[CrossRef] [PubMed]

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

2007

Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
[CrossRef]

2006

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2005

2004

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

2002

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
[CrossRef] [PubMed]

2001

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

2000

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

1994

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

1993

1992

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

1990

1973

W. Koechner, “Transient thermal profiles in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[CrossRef]

1970

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG: Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Ackermann, L.

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Albach, D.

Alderighi, D.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef] [PubMed]

Ananyan, N.

Anghel, S.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Azrakantsyan, M.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Basu, S.

Bisson, J.-F.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Boulon, G.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Bowers, M. S.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Byer, R. L.

Cao, Y. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Carson, T.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Chanteloup, J.-C.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Ciofini, M.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

A. Lapucci, M. Ciofini, M. Vannoni, A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power,” Appl. Opt. 51(18), 4224–4231 (2012).
[CrossRef] [PubMed]

Cousins, A.

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Dupré, K.

Epicier, T.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Esposito, L.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Feng, Y.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Ferrara, P.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Frede, M.

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Gevorgyan, V.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Gizzi, L. A.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

Gong, M.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Guo, W.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Hein, J.

Hostaša, J.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

Huang, J. Q.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Huang, L.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Huang, Q. F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Huang, X.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Ikesue, A.

Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
[CrossRef]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Kaminskii, A. A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Kamiskii, A. A.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Karsch, S.

Khazanov, E. A.

Klingebiel, S.

Koechner, W.

W. Koechner, “Transient thermal profiles in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[CrossRef]

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG: Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Kracht, D.

Krausz, F.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Kudryashov, A.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Kurimura, S.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Labate, L.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

Lapucci, A.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

A. Lapucci, M. Ciofini, M. Vannoni, A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power,” Appl. Opt. 51(18), 4224–4231 (2012).
[CrossRef] [PubMed]

Latham, W. P.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Li, J. T.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Liu, H. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Liu, Q.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Lobad, A.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Lu, J.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Lucianetti, A.

Lupei, V.

Newell, T. C.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Peterson, P.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Piancastelli, A.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Pirri, A.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef] [PubMed]

Prabhu, M.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Rice, D. K.

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG: Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Sato, Y.

Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
[CrossRef]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Seamans, J. F.

Serantoni, M.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Shirakawa, A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Shoji, I.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Siebold, M.

Sordini, A.

Taira, T.

Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
[CrossRef]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Takaichi, K.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Tang, F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Tidwell, S. C.

Toci, G.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef] [PubMed]

Ueda, K.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Ueda, K.-I.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Uematsu, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Vannini, M.

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef] [PubMed]

Vannoni, M.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Vretenar, N.

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

Wandt, C.

Wang, D.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Wang, W. C.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

Wang, Y.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Wilhelm, R.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Yagi, H.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Yan, X.

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Yanagitani, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

Yoshida, K.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd:Y3 Al5 O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[CrossRef]

Appl. Phys. Lett.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3 Al5 O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG: Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Sato, A. Ikesue, T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 838–843 (2007).
[CrossRef]

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

J. Alloy. Comp.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3 Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Appl. Phys.

W. Koechner, “Transient thermal profiles in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[CrossRef]

J. Eur. Ceram. Soc.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Laser Phys. Lett.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, W. C. Wang, Q. F. Huang, J. T. Li, “Diode-pumped multilayer Yb:YAG composite ceramic laser,” Laser Phys. Lett. 9(8), 564–569 (2012).
[CrossRef]

X. Yan, Q. Liu, L. Huang, Y. Wang, X. Huang, D. Wang, M. Gong, “A high efficient one-end-pumped TEM00 laser with optimal pump mode,” Laser Phys. Lett. 5(3), 185–188 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Proc. SPIE

N. Vretenar, T. Carson, A. Lobad, P. Peterson, T. C. Newell, W. P. Latham, “Thermal management investigations in ceramic thin disk lasers,” Proc. SPIE 7836, 78360J1 (2010).

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” Proc. SPIE 4184, 373–376 (2001).

A. Lapucci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Pirri, G. Toci, M. Vannini, “Characterization of Yb:YAG active slab media based on a layered structure with different doping,” Proc. SPIE 8780, 87800J1 (2013).

Prog. Quantum Electron.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Other

COSMOS M, Design Star Product, Structural Research and Analysis Corp. – (User’s Guide and Tutorial), www.cosmosm.com , Los Angeles (2001).

G. Toci, M. Ciofini, L. Esposito, P. Ferrara, L. A. Gizzi, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, and M. Vannini are preparing a manuscript to be called “Experimental measurement of the thermal lens effect and birefringence in Yb:YAG ceramics with layered structure.”

T. Kamimura, T. Okamoto, Y. L. Aung, and A. Ikesue, “Ceramic YAG composite with Nd gradient structure for homogeneous absorption of pump power,” in Conference on Lasers and Electro-Optics (CLEO) OSA Technical Digest Series (CD) (2007), paper CThT6.
[CrossRef]

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer, 1988).

R. Paschotta, Encyclopedia of Laser Physics and Technology (John Wiley, 2008).

M. Born and E. Wolf, Principles of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pictorial view of the simulated geometries with COSMOS software package. (a): annular cooling; (b): cooling on the whole surface; (c): finite element grid of the computational domain.

Fig. 2
Fig. 2

Temperature distribution in an axial cross-section for the 5 cases in RCG. Maximum temperatures are for the five samples Tmax(1) = 71°C, Tmax(2) = 65°C, Tmax(3) = 71°C, Tmax(4) = 81°C, Tmax(5) = 81°C.

Fig. 3
Fig. 3

Surface deformation in an axial cross-section for the 5 cases in RCG.

Fig. 4
Fig. 4

Von Mises stress distribution in an axial cross-section for the 5 cases in RCG.

Fig. 5
Fig. 5

Comparison of the calculated OPD radial profile and that experimentally measured with a Shack-Hartmann on a 2 mm diameter aperture of our sample, data reported here refer to the uniform doping distribution (sample #1).

Fig. 6
Fig. 6

OPD approximated using Zernike polynomials (sample n.1).

Fig. 7
Fig. 7

Temperature distribution in an axial cross-section for the 5 doping cases of Table 1, adopting a Face Cooling Geometry (FCG) with 3 mm thickness and 0.5 mm pump volume diameter.

Fig. 8
Fig. 8

Thermal lens Dioptric Power versus thickness for the five analyzed doping distributions in case of Face Cooling Geometry.

Tables (4)

Tables Icon

Table 1 Doping levels of the uniform/structured samples studied in our numerical simulations.

Tables Icon

Table 2 Maximum temperature, maximum surface deformations and maximum Von Mises stresses for the 5 analyzed cases in RCG.

Tables Icon

Table 3 Effective focal length (e.f.l.) calculated for the 5 analyzed samples in the RCG configuration (thermal power loading equal to 2.6 W).

Tables Icon

Table 4 Minimum and maximum relative contributions to the thermal lens Dioptric Power.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

O P D ( r ) = ( n 0 1 ) Δ L ( r ) + 0 L + Δ L ( r ) ( n T ) ε ( T ( r ) T R E F ) d z + j = r , ϑ , z ( 0 L + Δ L ( r ) ( n ε j ) T ε j ( r ) d z )
{ ε r = 1 E [ σ r ν ( σ ϕ + σ z ) ] + α ( T T R E F ) ε ϕ = 1 E [ σ ϕ ν ( σ r + σ z ) ] + α ( T T R E F ) ; ε z = 1 E [ σ z ν ( σ ϕ + σ r ) ] + α ( T T R E F )
{ ε r ϕ = ( 1 + ν E ) τ r ϕ ε r z = ( 1 + ν E ) τ r z ; ε ϕ z = ( 1 + ν E ) τ ϕ z
Δ B i j = p i j k l ε k l ,
i = 1 , 2 , 3 ( B ˜ i x i 2 ) = 1 ,
B ˜ i = ( B 0 + Δ B ˜ i ) = 1 n i 2 ,
n i = n 0 + j = r , ϑ , z ( ( n i ε j ) T ε j ( r ) ) ,
Δ B ( x ' , y ' , z ' ) = | p 11 ε 1 + p 12 ( ε 2 + ε 3 ) p 44 ε 6 p 44 ε 5 p 44 ε 6 p 11 ε 2 + p 12 ( ε 1 + ε 3 ) p 44 ε 4 p 44 ε 5 p 44 ε 4 p 11 ε 3 + p 12 ( ε 1 + ε 2 ) | ,
{ p 11 = 0.0290 p 12 = + 0.0091. p 44 = 0.0615
f ( r , ϑ ) = n = 0 m = n n ( a n m Z n m ( r , ϑ ) ) ,
a n m = c i r c l e f ( r , ϑ ) Z n m ( r , ϑ ) r d r d ϑ .
f ( r M A X 2 4 a 20 ) ,

Metrics