Abstract

Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to the low effective volume of the confined modes, matter-light interaction is very much enhanced. This effect lowers the velocity of the SH polariton in the material by 50 times, and increases the SH confinement inside the nanocavity due to this higher refractive index. We also show that the SH phase-matching condition is achieved through LO-phonon mediation. Finally, birrefringence of the crystal produces a strong SH intensity dependence on the input polarization, with a high polarization contrast, which could be used as a mechanism for light switching in the nanoscale.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced random lasing in ZnO nanocombs assisted by Fabry–Perot resonance

Yungting Chen and Yangfang Chen
Opt. Express 19(9) 8728-8734 (2011)

Mg-alloyed ZnO nanocombs for self-gating photodetectors

Qiuguo Li, HAO Chen, and Sheng Chu
Opt. Express 25(5) 5091-5100 (2017)

Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod

Liaoxin Sun, Hongxing Dong, Wei Xie, Zhenghua An, Xuechu Shen, and Zhanghai Chen
Opt. Express 18(15) 15371-15376 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
    [Crossref]
  2. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
    [Crossref] [PubMed]
  3. W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
    [Crossref]
  4. H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
    [Crossref] [PubMed]
  5. S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
    [Crossref]
  6. C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
    [Crossref]
  7. A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T. K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20(11), 11830–11837 (2012).
    [Crossref] [PubMed]
  8. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
    [Crossref]
  9. T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express 20(5), 5530–5537 (2012).
    [Crossref] [PubMed]
  10. C. F. Klingshirn, Semiconductor Optics (Springer, 2005).
  11. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  12. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
    [Crossref] [PubMed]
  13. J. Dai, J. H. Zeng, S. Lan, X. Wan, and S. L. Tie, “Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods,” Opt. Express 21(8), 10025–10038 (2013).
    [Crossref] [PubMed]
  14. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
    [Crossref]
  15. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
    [Crossref]
  16. S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
    [Crossref]
  17. J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
    [Crossref]
  18. S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
    [Crossref]
  19. X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
    [Crossref]
  20. G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
    [Crossref]
  21. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  22. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  23. A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
    [Crossref] [PubMed]
  24. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [Crossref] [PubMed]
  25. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  26. G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
    [Crossref]
  27. T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
    [Crossref]
  28. C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
    [Crossref] [PubMed]
  29. D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
    [Crossref]
  30. J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
    [Crossref]
  31. A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
    [Crossref] [PubMed]
  32. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
    [Crossref]
  33. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
    [Crossref] [PubMed]
  34. L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
    [Crossref] [PubMed]
  35. N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
    [Crossref] [PubMed]
  36. M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
    [Crossref]
  37. U. Choppali and B. P. Gorman, “Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates,” Opt. Mater. 31(2), 143–148 (2008).
    [Crossref]
  38. Maria Cristina Larciprete, and Mario Bertolotti, “Second harmonic generation and related studies on ZnO films” in Handbook of zinc oxide and related materials, Part II, Zhe Chuan Feng eds. (CRC Press., 2013), pp. 141–166.

2013 (2)

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

J. Dai, J. H. Zeng, S. Lan, X. Wan, and S. L. Tie, “Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods,” Opt. Express 21(8), 10025–10038 (2013).
[Crossref] [PubMed]

2012 (9)

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express 20(5), 5530–5537 (2012).
[Crossref] [PubMed]

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T. K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express 20(11), 11830–11837 (2012).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

2011 (6)

T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
[Crossref]

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[Crossref] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
[Crossref]

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

2010 (2)

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

2009 (2)

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

2008 (2)

U. Choppali and B. P. Gorman, “Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates,” Opt. Mater. 31(2), 143–148 (2008).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

2006 (3)

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

2005 (3)

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
[Crossref] [PubMed]

2003 (3)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

2002 (1)

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

2001 (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

1981 (1)

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[Crossref]

Adachi, S.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Agarwal, R.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

Alivov, Ya. I.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Avrutin, V.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Barille, E.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

Bayraktaroglu, A.

Bhattacharya, P.

Bock, M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Bouchoule, S.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Bragas, A. V.

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

Brimont, C.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Buyanova, I. A.

S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
[Crossref]

Cantwell, G.

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Capeluto, M. G.

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

Chan, S. W.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

Chan, W. K.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

Che, C. M.

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
[Crossref] [PubMed]

Chen, J. R.

Chen, S. L.

S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
[Crossref]

Chen, W. M.

S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
[Crossref]

Cheng, R.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

Cheong, H. D.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Chichibu, S. F.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Cho, C. H.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

Cho, J.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Cho, S.-J.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Choi, M. Y.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Choppali, U.

U. Choppali and B. P. Gorman, “Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates,” Opt. Mater. 31(2), 143–148 (2008).
[Crossref]

Comedi, D.

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

Dai, D. C.

Dai, J.

Das, A.

Das, S. K.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Deng, H.

Disseix, P.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

Djurišic, A. B.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

Dogan, S.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Frazer, N. L.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Gao, M.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Gerritsen, H. C.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Gorman, B. P.

U. Choppali and B. P. Gorman, “Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates,” Opt. Mater. 31(2), 143–148 (2008).
[Crossref]

Grinblat, G.

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

Grundmann, M.

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

Grunwald, R.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Guillet, T.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Guo, W.

Hamby, D. W.

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Han, N. S.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Heo, J.

Hilmer, H.

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

Hong, S.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Hsieh, W. F.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Huang, S. W.

Jang, H. M.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Jang, J. I.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Joo, T.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Jung, S. W.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Kamoun, O.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Ketterson, J. B.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Khedoe, R.

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Klopfstein, D. J.

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Koenderink, A. F.

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

Kuipers, L.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Kwok, W. M.

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

Lafosse, X.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Lagois, J.

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[Crossref]

Lai, Y. Y.

Lan, S.

Lan, Y. P.

Lee, H. W.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, K.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, S.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Leroux, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Leung, Y. H.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

Leymarie, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Li, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Li, H. Y.

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

Li, W.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Li, Y.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

Liu, C.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, D.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Liu, Y. C.

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

Lu, T. C.

Lu, X.

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Lucca, D. A.

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Malpuech, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Mexis, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Mihailovic, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Morkoc, H.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Nakamura, A.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Ng, T. K.

Nukala, P.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

Nunzi, J. M.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

O’Neill, C.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Ooi, B. S.

Orosz, L.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Ozgur, U.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Park, S.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Park, S. M.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Park, W. I.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Patriarche, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Peng, L.-M.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

Phan, T. L.

T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
[Crossref]

Phillips, D. L.

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

Phillips, J.

Piccione, B.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

Ravindran, P.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Reshchikov, M. A.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Réveret, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Rheinländer, B.

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

Rotermund, F.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Roy, B. K.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Roy, V. A. L.

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

Rühle, S.

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Salamo, G. J.

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Saykally, R. J.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

Schmidt-Grund, R.

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

Shen, D. Z.

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

Shi, S. L.

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
[Crossref] [PubMed]

Shim, H. S.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Solnyshkov, D.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Song, J. K.

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Sota, T.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Sturm, C.

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

Sun, Y.

T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
[Crossref]

Takagi, A.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Tam, K. H.

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

Teke, A.

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Tian, Z. R.

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Tie, S. L.

Tirado, M.

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van Vugt, L. K.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[Crossref] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Vanmaekelbergh, D.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[Crossref] [PubMed]

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Vincent, R.

T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
[Crossref]

Wan, X.

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wu, Y. C.

Xiao, M.

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Xie, M. H.

Xie, S.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Xu, S. J.

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
[Crossref] [PubMed]

Xu, Z. X.

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

Yan, H.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yi, G. C.

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

Yoshikaie, A.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Yoshioka, S.

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Zang, C. H.

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

Zeng, J. H.

Zhang, J. Y.

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

Zhang, X.

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Zhao, D. X.

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

Zhou, H.

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Zuniga-Perez, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Appl. Phys. B (1)

S. W. Chan, E. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84(1–2), 351–355 (2006).
[Crossref]

Appl. Phys. Lett. (5)

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

G. Grinblat, M. G. Capeluto, M. Tirado, A. V. Bragas, and D. Comedi, “Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence,” Appl. Phys. Lett. 100(23), 233116 (2012).
[Crossref]

S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown onAl2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80(11), 1924 (2002).
[Crossref]

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminesce study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, G. Malpuech, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, and J. Zuniga-Perez, “Fabrication and characterization of a room-temperature ZnO polariton laser,” Appl. Phys. Lett. 102(19), 191118 (2013).
[Crossref]

Chem. Phys. Lett. (1)

S. L. Shi, S. J. Xu, Z. X. Xu, V. A. L. Roy, and C. M. Che, “Broadband second harmonic generation from ZnO nano-tetrapods,” Chem. Phys. Lett. 506(4-6), 226–229 (2011).
[Crossref]

ECS Trans. (1)

G. Grinblat, M. G. Capeluto, M. Tirado, D. Comedi, and A. V. Bragas, “Two-photon photoluminescence from hierarchical ZnO nanostructures,” ECS Trans. 45(5), 67–72 (2012).
[Crossref]

J. Appl. Phys. (2)

U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

D. W. Hamby, D. A. Lucca, D. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

J. Korean Phys. Soc. (1)

T. L. Phan, Y. Sun, and R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59(1), 60–64 (2011).
[Crossref]

J. Nanosci. Nanotechnol. (1)

C. H. Zang, Y. C. Liu, D. X. Zhao, J. Y. Zhang, and D. Z. Shen, “The synthesis and optical properties of ZnO nanocombs,” J. Nanosci. Nanotechnol. 10(4), 2370–2374 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

A. B. Djurisić, W. M. Kwok, Y. H. Leung, D. L. Phillips, and W. K. Chan, “Stimulated emission in ZnO nanostructures: A time-resolved study,” J. Phys. Chem. B 109(41), 19228–19233 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang, and S. Xie, “Directly probing the anisotropic optical emission of individual ZnO nanorods,” J. Phys. Chem. C 114(25), 11081–11086 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

A. Takagi, A. Nakamura, A. Yoshikaie, S. Yoshioka, S. Adachi, S. F. Chichibu, and T. Sota, “Signatures of Γ1-Γ5 mixed-mode polaritons in polarized reflectance spectra of ZnO,” J. Phys. Condens. Matter 24(41), 415801 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett. 9(10), 3515–3520 (2009).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2012).
[Crossref]

Nanoscale (1)

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[Crossref] [PubMed]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

X. Lu, H. Zhou, G. J. Salamo, Z. R. Tian, and M. Xiao, “Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation,” New J. Phys. 14(7), 073017 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

U. Choppali and B. P. Gorman, “Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates,” Opt. Mater. 31(2), 143–148 (2008).
[Crossref]

Phys. Chem. Chem. Phys. (1)

N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, “Light-matter interaction and polarization of single ZnO nanowire lasers,” Phys. Chem. Chem. Phys. 14(30), 10556–10563 (2012).
[Crossref] [PubMed]

Phys. Rev. B (3)

S. L. Chen, W. M. Chen, and I. A. Buyanova, “Slowdown of light due to exciton-polariton propagation in ZnO,” Phys. Rev. B 83(24), 245212 (2011).
[Crossref]

C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-Grund, and M. Grundmann, “Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material,” Phys. Rev. B 83(20), 205301 (2011).
[Crossref]

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[Crossref]

Phys. Rev. Lett. (1)

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).
[Crossref] [PubMed]

Science (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Solid State Commun. (1)

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Other (2)

C. F. Klingshirn, Semiconductor Optics (Springer, 2005).

Maria Cristina Larciprete, and Mario Bertolotti, “Second harmonic generation and related studies on ZnO films” in Handbook of zinc oxide and related materials, Part II, Zhe Chuan Feng eds. (CRC Press., 2013), pp. 141–166.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a), (b) SEM images and (c), (d) geometrical description of the ZnO nanocombs (NCs). SEM images show a high density of randomly oriented NCs. In a close view into the tip of the teeth, the hexagonal shape can be seen, indicating that teeth are aligned with the c crystalline axis of wurtzite ZnO. NCs characteristic dimensions (see text for the measured values) are shown in (c) and (d).

Fig. 2
Fig. 2

(a) SH spectra of a single NC, for different incident photon energies. FP modes, which are the signature of SH confinement in the teeth cavities, are visible in each spectrum. (b) Detail of the spectrum at excitation energy of 1.58 eV. The nonlinear fit (green) is a sum of Lorentzians, corresponding to each FP mode (pink). (c) and (d) are the histograms of the finesse (f) and quality factor (Q), respectively, taken from the FP modes in all the measurements of (a).

Fig. 3
Fig. 3

Integrated SH intensity as a function of the SH energy. The energy maxima lie at the first and second phonon replicas.

Fig. 4
Fig. 4

(a) Sketch of the geometry of the experiment for p-p polarization and s-p polarization. kF(SH), EF(SH) are the wave vector and electric field of the fundamental (SH), θ is the angle of incidence and PSH is the non-linear polarization of the material. The c axis coincides with the z axis. (b) Intensity for 1.58 eV excitation energy as a function of the polarization angle of the incident beam, for three energies within the SH spectrum. (c) Contrast of polarization as a function of the SH energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 2 ω I ω 2 ( 2 π l λ ) 2 e 2 δ 2 ω sin 2 ψ + sin h 2 δ 2 ω ψ 2 + δ 2 ω 2 d e f f 2
f = π 2 arc sin ( | 1 R | / 4 R )

Metrics