Abstract

We present a predictive model of the depolarization ratio of backscattered linearly polarized light from spatially continuous refractive index media that is applicable to the sub-diffusion regime of light scattering. Using Monte Carlo simulations, we derived a simple relationship between the depolarization ratio and both the sample optical properties and illumination-collection geometry. Our model was validated on tissue simulating phantoms and found to be in good agreement. We further show the utility of this model by demonstrating its use for measuring the depolarization length from biological tissue in vivo. We expect our results to aid in the interpretation of the depolarization ratio from sub-diffusive reflectance measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [CrossRef] [PubMed]
  2. E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).
  3. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21(9), 1799–1804 (2004).
    [CrossRef] [PubMed]
  4. M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006).
    [CrossRef]
  5. J. D. Rogers, I. R. Capoğlu, V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).
    [CrossRef] [PubMed]
  6. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
    [CrossRef] [PubMed]
  7. A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).
  8. M. Moscoso, J. B. Keller, G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18(4), 948–960 (2001).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21(16), 1310–1312 (1996).
    [CrossRef] [PubMed]
  10. M. Xu, R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005).
    [CrossRef] [PubMed]
  11. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010).
    [CrossRef] [PubMed]
  12. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
    [CrossRef] [PubMed]
  13. C. J. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32(2), 142–144 (2007).
    [CrossRef] [PubMed]
  14. O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
    [CrossRef] [PubMed]
  15. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008).
    [CrossRef] [PubMed]
  16. D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  17. M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95(21), 213901 (2005).
    [CrossRef] [PubMed]
  18. Y. Liu, Y. Kim, X. Li, V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
    [CrossRef] [PubMed]
  19. X. Guo, M. F. G. Wood, N. Ghosh, I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010).
    [CrossRef] [PubMed]
  20. M. Ahmad, S. Alali, A. Kim, M. F. Wood, M. Ikram, I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?” Biomed. Opt. Express 2(12), 3248–3258 (2011).
    [CrossRef] [PubMed]
  21. N. Ghosh, H. Patel, P. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11(18), 2198–2205 (2003).
    [CrossRef] [PubMed]
  22. V. Sankaran, M. J. Everett, D. J. Maitland, J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24(15), 1044–1046 (1999).
    [CrossRef] [PubMed]
  23. S. A. Prahl, M. J. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  24. R. Michels, F. Foschum, A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  25. A. J. Gomes, V. Backman, “Analytical light reflectance models for overlapping illumination and collection area geometries,” Appl. Opt. 51(33), 8013–8021 (2012).
    [PubMed]
  26. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
    [CrossRef] [PubMed]
  27. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).
  28. C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
    [CrossRef] [PubMed]
  29. A. Amelink, H. J. Sterenborg, M. P. Bard, S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
    [CrossRef] [PubMed]
  30. A. Kim, M. Roy, F. Dadani, B. C. Wilson, “A fiber optic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010).
    [CrossRef] [PubMed]
  31. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
    [CrossRef] [PubMed]
  32. A. J. Gomes, V. Turzhitsky, S. Ruderman, V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
    [CrossRef] [PubMed]
  33. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998).
    [CrossRef] [PubMed]
  34. A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
    [CrossRef] [PubMed]

2012 (4)

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

A. J. Gomes, V. Backman, “Analytical light reflectance models for overlapping illumination and collection area geometries,” Appl. Opt. 51(33), 8013–8021 (2012).
[PubMed]

A. J. Gomes, V. Turzhitsky, S. Ruderman, V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
[CrossRef] [PubMed]

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

2011 (3)

M. Ahmad, S. Alali, A. Kim, M. F. Wood, M. Ikram, I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?” Biomed. Opt. Express 2(12), 3248–3258 (2011).
[CrossRef] [PubMed]

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (1)

2008 (3)

2007 (3)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

C. J. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32(2), 142–144 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (1)

2001 (2)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

M. Moscoso, J. B. Keller, G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18(4), 948–960 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1996 (1)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

1993 (1)

1988 (1)

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Ahmad, M.

Akkermans, E.

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

Alali, S.

Alfano, R. R.

M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006).
[CrossRef]

M. Xu, R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005).
[CrossRef] [PubMed]

M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95(21), 213901 (2005).
[CrossRef] [PubMed]

Amelink, A.

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Backman, V.

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

A. J. Gomes, V. Turzhitsky, S. Ruderman, V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
[CrossRef] [PubMed]

A. J. Gomes, V. Backman, “Analytical light reflectance models for overlapping illumination and collection area geometries,” Appl. Opt. 51(33), 8013–8021 (2012).
[PubMed]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Y. Liu, Y. Kim, X. Li, V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Badizadegan, K.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Bard, M. P.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Bigio, I. J.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Boone, C. W.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Brewer, M. A.

O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
[CrossRef] [PubMed]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Buhr, H. J.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Burgers, S. A.

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Campagnola, P. J.

O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
[CrossRef] [PubMed]

Capoglu, I. R.

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

Colston, B. W.

Da Silva, L. B.

Dadani, F.

DelaCruz, M.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

Everett, M. J.

Feld, M. S.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Foschum, F.

G. Wood, M. F.

Gavrilova, A. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Ghosh, N.

Gomes, A. J.

Gopal, V.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Grishaev, V. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Guo, X.

Gupta, P.

Holmer, C.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Hunter, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Ikram, M.

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Jameel, M.

Kalashnikov, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Kapralov, S. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Keller, J. B.

Kienle, A.

Kim, A.

Kim, Y.

Kim, Y. L.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Kromine, A.

Kumar, G.

LaComb, R. B.

O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
[CrossRef] [PubMed]

Lacoste, D.

Lehmann, K. S.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Lenke, R.

Li, X.

Liu, Y.

Maitland, D. J.

Maret, G.

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Maynard, R.

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

Michels, R.

Moscoso, M.

Mueller, G.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Müller, M. G.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Mutyal, N.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

Mutyal, N. N.

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

Nadiarnykh, O.

O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
[CrossRef] [PubMed]

Papanicolaou, G.

Patel, H.

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Popescu, G.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Pradhan, P.

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

Prahl, S. A.

Radosevich, A.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010).
[CrossRef] [PubMed]

Radosevich, A. J.

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Reissfelder, C.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Ritz, J. P.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Rogers, J.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

Rogers, J. D.

Roggan, A.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Rojas-Ochoa, L. F.

Roy, H.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

Roy, H. K.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008).
[CrossRef] [PubMed]

Roy, M.

Ruderman, S.

A. J. Gomes, V. Turzhitsky, S. Ruderman, V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
[CrossRef] [PubMed]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

Sankaran, V.

Scheffold, F.

Schmitt, J. M.

J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21(16), 1310–1312 (1996).
[CrossRef] [PubMed]

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Schoenenberger, K.

Schurtenberger, P.

Sheppard, C. J.

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Sterenborg, H. J.

Stoner, G. D.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Taflove, A.

Thomas, G. A.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Turzhitsky, V.

Turzhitsky, V. M.

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

van Gemert, M. J.

Vitkin, I. A.

Wali, R. K.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Walsh, J. T.

Wanken, J.

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

Wax, A.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Welch, A. J.

Wilson, B. C.

Wolf, P. E.

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

Wood, M. F.

Xu, M.

M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006).
[CrossRef]

M. Xu, R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005).
[CrossRef] [PubMed]

M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95(21), 213901 (2005).
[CrossRef] [PubMed]

Yi, J.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (2)

BMC Cancer (1)

O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010).
[CrossRef] [PubMed]

Gastroenterology (1)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).

J. Biomed. Opt. (5)

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012).
[CrossRef] [PubMed]

C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Phys. France (1)

E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95(21), 213901 (2005).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Ins. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).

Proc. SPIE (1)

M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The scaled depolarization length as a function of the shape parameter (m) of the refractive index correlation function for different anisotropy (g) values.

Fig. 2
Fig. 2

The relationship between the depolarization ratio (d) and the optical properties of the medium. (a) d as a function of the parameters of the phase function m and g for R/ls = 8 and θc = 0-18°. (b) The relationship between d and the dimensionless parameter R/ls for m = 1.3, g = 0.9 and θc = 0-18°.

Fig. 3
Fig. 3

Relationship between the depolarization ratio from Monte Carlo (dMC) and the collection angle around the exact backscattering direction. The other constants were R/ls = 8, m = 1.3, and g = 0.9.

Fig. 4
Fig. 4

(a) The depolarization ratio as a function of R/lt and R/lp from MC simulations (filled circles). The displayed surface is the best fit of Eq. (5) to the MC data for a θc of 14°. (b) The depolarization ratio from MC simulations (dMC) compared with the depolarization ratio as computed by the model in Eq. (5) (dModel). (c) The percent error between dMC and dModel as a function of dMC.

Fig. 5
Fig. 5

Depolarization ratio (d) calculated from MC simulations incorporating ideal polarizers and complete illumination-collection area overlap (dideal) versus the depolarization ratio as calculated from MC simulations incorporating polarizers with 94% contrast and a 30 µm center-to-center separation between illumination and collection areas (dnon-ideal).

Fig. 6
Fig. 6

Calculated ratio of the Intralipid depolarization length to the transport mean free path as a function of wavelength.

Fig. 7
Fig. 7

(a) Comparison of the theoretical depolarization length ( l p t h e o r y ) for the Intralipid phantom versus the experimentally measured depolarization length ( l p exp ) using the polarization-gated probe. (b) Percent error between ( l p t h e o r y ) and ( l p exp ) over the wavelength range.

Fig. 8
Fig. 8

(a) The depolarization ratio (d) is significantly elevated in dysplastic regions of the esophagus. (b) The elevation in d is driven by increases in both lt and lp with dysplasia. Intervals are means ± 95% confidence intervals.

Tables (2)

Tables Icon

Table 1 d coefficients as linear functions of θc (x1 + x2θc)

Tables Icon

Table 2 Comparison of probe measurements of the depolarization ratio (d) from microsphere phantoms with Monte Carlo measurements of d from microsphere phantoms

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d = I | | I I | | + I ,
l p = l s / ln ( 1 / λ + ) ,
S ( θ ) [ cos θ 0 0 1 ] = k 3 π 2 Φ ( 2 k sin θ 2 ) [ cos θ 0 0 1 ] ,
Φ n ( κ ) = N l c 3 π 3 2 Γ ( m ) ( 1 + κ 2 l c 2 ) m ,
d = ( f 1 ( θ c ) + f 2 ( θ c ) R l t + f 3 ( θ c ) R l p ) 1 ,
I ( λ ) = [ c f 1 ( m , θ c ) ( R a λ 2 m 4 ) f 2 ( m , θ c ) ] exp ( μ a ( λ ) L ¯ ( λ ) ) ,
d = 0.89 ( f 1 ( θ c ) + f 2 ( θ c ) R l t + f 3 ( θ c ) R l p ) 1 .

Metrics