Abstract

Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer... As a major result, a possible steady-state dual-mode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
    [CrossRef]
  2. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17, 13851–13859 (2009).
    [CrossRef] [PubMed]
  3. M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
    [CrossRef]
  4. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
    [CrossRef]
  5. M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
    [CrossRef]
  6. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
    [CrossRef]
  7. L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).
  8. M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).
  9. J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
    [CrossRef]
  10. L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
    [CrossRef]
  11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
    [CrossRef]
  12. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
    [CrossRef]
  13. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
    [CrossRef]
  14. K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.
  15. J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
    [CrossRef]
  16. A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
    [CrossRef]
  17. C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006).
    [CrossRef]
  18. L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002).
    [CrossRef]
  19. L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
    [CrossRef]
  20. D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, 1992).
  21. M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
    [CrossRef]
  22. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
    [CrossRef] [PubMed]
  23. M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
    [CrossRef]
  24. W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
    [CrossRef]

2013 (1)

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

2012 (1)

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

2011 (1)

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

2009 (1)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

2006 (1)

C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006).
[CrossRef]

2005 (2)

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

2004 (2)

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

2003 (2)

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
[CrossRef]

2002 (4)

L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002).
[CrossRef]

L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
[CrossRef]

M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[CrossRef]

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

2000 (3)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

1997 (1)

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

1996 (1)

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Ahmed, M.

M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[CrossRef]

Albert, J.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Almuneau, G.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

Arnaud, J.

L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002).
[CrossRef]

L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
[CrossRef]

Augendre, E.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Balle, S.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Benyattou, T.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Bernhardi, E. H.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Bloch, J.

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

Brault, J.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Bremond, G.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Bru-Chevalier, C.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Brunner, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Burla, M.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Carlin, J. F.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Chusseau, L.

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002).
[CrossRef]

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
[CrossRef]

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Coldren, L. A.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

Crowley, M. T.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Danckaert, J.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

de Ridder, R. M.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Disanto, F.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Erneux, T.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Furfaro, L.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Gammon, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Gasquet, D.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Gendry, M.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Gillespie, D. T.

D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, 1992).

Giudici, M.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Grillot, F.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Guerra, J. M.

J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
[CrossRef]

Guillot, G.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Guisado, J. L.

J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
[CrossRef]

Gulden, K.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Hachair, X.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Hollinger, G.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Houdre, R.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Hovel, R.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Huntington, A.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Ilegems, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Jang, Y.

Javaloyes, J.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Jeon, M. Y.

Jiménez-Morales, F.

J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
[CrossRef]

Katzer, D. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Khan, M. R. H.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Kim, N.

Kusiaku, K.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Lamb, W.

M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).

Leclercq, J.-L.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Lee, C. W.

Lester, L. F.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Letartre, X.

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Maarel, M. A.

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

Mandel, P.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Marpaung, D. A. I.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Marty, O.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Masoller, C.

C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006).
[CrossRef]

Melliti, A.

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

Monat, C.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Moser, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Naderi, N. A.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Nagler, B.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Nakata, Y.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Oesterle, U.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Ouerghui, W.

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

Panajotov, K.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Park, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Park, K. H.

Pedaci, F.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Pellandini, P.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Philippe, F.

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
[CrossRef]

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Pollnau, M.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Raghunathan, R.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Regreny, P.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Roeloffzen, C. G. H.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Rojo-Romeo, P.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Salem, B.

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Sargent, M.

M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).

Scully, M. O.

M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).

Seassal, C.

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Serrat, C.

C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006).
[CrossRef]

Shanabrook, B. V.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Shin, J.

Sim, E.

Snow, E. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Stanley, R. P.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Sugawara, M.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

Tredicce, J.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Van der Sande, G.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Veretennicoff, I.

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Viktorov, E. A.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Viktorovitch, P.

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

Weisbuch, C.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Wörhoff, K.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

Wright, J. B.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Yacomotti, A. M.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

Yamada, M.

M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[CrossRef]

Yee, D.-S.

Appl. Phys. Lett. (3)

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

IEE Proc. J (1)

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).

IEEE J. Quantum Electron. (1)

M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[CrossRef]

IEEE Photon Technol. Lett. (1)

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012).
[CrossRef]

J. Appl. Phys. (1)

M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004).
[CrossRef]

Nature Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Commun. (1)

J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005).
[CrossRef]

Opt. Express (1)

Opt. Quant. Electron. (1)

L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002).
[CrossRef]

Optical and Quantum Electronics (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000).
[CrossRef]

Phys. Rev. A (4)

L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013).
[CrossRef]

L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002).
[CrossRef]

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[CrossRef]

C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006).
[CrossRef]

Phys. Rev. B (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Phys. Rev. E (1)

J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003).
[CrossRef]

Physica E (1)

W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005).
[CrossRef]

Science (1)

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996).
[CrossRef] [PubMed]

Other (3)

K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.

D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, 1992).

M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy diagram model of bulk or QW lasers (see text for details).

Fig. 2
Fig. 2

Analytical solution of the dual-mode steady-state regime of a QW semiconductor laser. (a) α1-value satisfying stable dual-mode operation as a function of m, the total photon count in the cavity. Solid line is for the exactly balanced powers between the two modes and dashed lines are the limits when one mode power is half the other. (b) Fraction of power in mode#2, λ2 vs α1 vs intraband relaxation time τ = 16, 33, 66, 130, 260 and 525 fs increasing as indicated by the arrow.

Fig. 3
Fig. 3

Balanced dual-mode operation as a function of α1 and lattice temperature. Solid line is from analytical model of §2.2. Dots are from Monte Carlo outputs with color code: Red, single-mode operation; Blue, unbalanced dual-mode operation; Green, balanced dual-mode operation.

Fig. 4
Fig. 4

Monte Carlo outputs for standard conditions plus α1 = 0.584 and m = 350. (a) Occupancy in the conduction band; arrows indicates the position of the two lasing modes and the corresponding spectral hole in the carrier population. (b) Photo-detection spectral densities of the total emission of the dual-mode laser (green) and of each of the two modes (blue and red) vs normalized pulsation Ω = 1 ns−1. Dots are the direct output of the program and lines are smoothed averages.

Fig. 5
Fig. 5

Histograms of photon probabilities in each mode (Red: mode#1, Blue: mode#2) vs α1 the cavity losses of mode#1 (vertical dimension), and vs the average total photon number in the cavity (horizontal dimension). The same scale is used for all plots.

Fig. 6
Fig. 6

Energy diagram model of an InAs QD semiconductor laser in InP barriers (see text for details).

Fig. 7
Fig. 7

Intensity vs pump (in ns−1) in log scale. Blue (mode#1) and Red (mode#2) curves are mostly superimposed. Brown curve is for the total emitted power.

Fig. 8
Fig. 8

Left column, (a) & (c): Probability of finding m photons in the mode#1 (blue), mode#2 (red) or in whatever of the two modes (brown). Right column, (b) & (d): Normalized spectral density plots as a function of Ω = 1 ns−1. (a) & (b): �� = 1.33 ��th, (c) & (d): �� = 2.5 ��th

Fig. 9
Fig. 9

(a) Influence of mode gains g1 & g2. Increase of g1 while g2 decreases keeping g1g2 = 1. (b) Influence of QD capture time, τ ∈ [10 fs, 5 ns], g 1 = 3 2 , g 2 = 2 3 . Blue: mode#1, Red: mode#2, Brown: total.

Tables (1)

Tables Icon

Table 1 Summary of notations and rates

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

1 α i ( n L i n i ) + 1 λ i 𝒥 n L i ( 1 n i ) = 1
n L i = λ i 𝒥 α i ( 1 + 2 α i β i λ i 𝒥 1 ) , with β i = 1 + α i 2
( n L 2 1 + v 2 n L 2 1 v 2 ) ( n L 1 1 v 2 n L 1 1 + v 2 ) = ( 1 1 v 1 + v q δ 1 v 1 + v + q δ ) L 1 L 2 , with v = 1 4 λ 2 𝒥 p ( 1 q δ )
α i m i = ( n L i n i ) m i + n L i ( 1 n i )
α 1 m 1 + α 2 m 2 = 𝒥
α i m i = λ i 𝒥 , with λ 1 + λ 2 = 1
k [ L 2 , L 1 1 ] or k [ 1 , 2 1 ]
n k + 1 = h ( n k ) , where h ( x ) = q δ x + λ 2 𝒥 / p ( 1 q δ ) x + 1
x ± = 1 + v 2 , with v = 1 4 λ 2 𝒥 p ( 1 q δ )
h ( x ) x + h ( x ) x = K x x + x x
K = ( 1 + v ) q δ ( 1 v ) ( 1 v ) + q δ ( 1 + v )
n L 2 x + n L 2 x = n L 1 x + n L 1 x K L 2 L 1
𝒥 1 α 2 2 τ , where τ = 1 p ( 1 q δ )

Metrics