Abstract

Aluminum Gallium Arsenide (AlGaAs) is an attractive platform for the development of integrated optical circuits for all-optical signal processing thanks to its large nonlinear coefficients in the 1.55-μm telecommunication spectral region. In this paper we discuss the results of the nonlinear continuous-wave optical characterization of AlGaAs waveguides at a wavelength of 1.55 μm. We also report the highest value ever reported in the literature for the real part of the nonlinear coefficient in this material (Re(γ) ≈521 W−1m−1).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, F. Sasan, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [CrossRef]
  3. J. U. Kang, G. I. Stegeman, J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21(3), 189–191 (1996).
    [CrossRef] [PubMed]
  4. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
    [CrossRef]
  5. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19(13), 12440–12455 (2011).
    [CrossRef] [PubMed]
  6. J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient Continuous-Wave Four-Wave Mixing and Self-Phase Modulation in a Bandgap-Engineered AlGaAs Waveguide,”in Conf. Lasers Electro-Optics 2012 of OSA Technical Digest (Optical Society of America, 2012), paper CW1A.4 (2012).
  7. W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
    [CrossRef]
  8. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010).
    [CrossRef] [PubMed]
  9. D. Duchesne, R. Morandotti, G. A. Siviloglou, G. El, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” in Proceedings of International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07 475–478 (2007).
    [CrossRef]
  10. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377–9384 (2006).
    [CrossRef] [PubMed]
  11. C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
    [CrossRef]
  12. S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).
  13. T. Barwicz, H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [CrossRef]
  14. L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, A. Pasquazi, M. Peccianti, D. J. Moss, J. S. Aitchison, R. Morandotti, “Optical frequency conversion in integrated devices,” J. Opt. Soc. Am. B 28(12), A67 (2011).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001)
  16. I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett. 37(12), 2295–2297 (2012).
    [CrossRef] [PubMed]
  17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  18. M. Foster, K. Moll, A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  19. K. Inoue, H. Oda, N. Ikeda, K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
    [CrossRef] [PubMed]
  20. A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
    [CrossRef]
  21. R. Ahmad, M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20(9), 9572–9580 (2012).
    [CrossRef] [PubMed]
  22. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010).
    [CrossRef] [PubMed]

2012

2011

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, A. Pasquazi, M. Peccianti, D. J. Moss, J. S. Aitchison, R. Morandotti, “Optical frequency conversion in integrated devices,” J. Opt. Soc. Am. B 28(12), A67 (2011).
[CrossRef]

K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19(13), 12440–12455 (2011).
[CrossRef] [PubMed]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

2010

2009

2008

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

2006

2005

2004

1997

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[CrossRef]

1996

1990

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Agrawal, G. P.

Ahmad, R.

Aitchison, J. S.

Apiratikul, P.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Asakawa, K.

Astar, W.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Barwicz, T.

Camasta, M. C.

Cannon, B. M.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Carter, G. M.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Caspani, L.

Cestier, I.

Chakrabarti, U. K.

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Christodoulides, D. N.

Colman, P.

Colonna, J. P.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Combrié, S.

Cristiani, I.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

De Angelis, C.

De Rossi, A.

Dolgaleva, K.

Duchesne, D.

Eckhouse, V.

Eisenstein, G.

El-Ganainy, R.

Fan, P. L.

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

Fedeli, J. M.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Ferrera, M.

Foster, M.

Gaeta, A.

Gautier, P.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Hasama, T.

Haus, H. A.

Hobson, W. S.

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Hryniewicz, J. V.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[CrossRef]

Ikeda, N.

Inoue, K.

Ishikawa, H.

Iwanow, R.

Jalali, B.

Jui-Ming, H.

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

Kamei, T.

Kanakaraju, S.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21(3), 189–191 (1996).
[CrossRef] [PubMed]

Kawashima, H.

Kinsella, A. P.

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Kintaka, K.

Lacava, C.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Lee, C.

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

Lih, G. S.

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

Liu, Y.

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Locatelli, A.

Mahmood, T.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Minzioni, P.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Modotto, D.

Moll, K.

Morandotti, R.

Mori, M.

Moss, D. J.

Murphy, T. E.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Ng, W. C.

Oda, H.

Ogasawara, T.

Okano, M.

Pasquazi, A.

Pearton, S. J.

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Peccianti, M.

Pozzi, F.

Premaratne, M.

Qian, L.

Razzari, L.

Richardson, C. J. K.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Rochette, M.

Rukhlenko, I. D.

Sakakibara, Y.

Santagiustina, M.

Sasan, F.

Shoji, Y.

Siviloglou, G. A.

Someda, C. G.

Sorel, M.

Stanley, C. R.

Stegeman, G. I.

Suda, S.

Suntsov, S.

Trita, A.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

Tsang, H. K.

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Vadalà, G.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[CrossRef]

Wagner, S. J.

Wathen, J. J.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

Wu, M.

C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997).
[CrossRef]

Appl. Phys. Lett.

A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011).
[CrossRef]

IEEE J. Quantum Electron.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nanom. Struct.

S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).

Opt. Express

Opt. Lett.

Semicond. Sci. Technol.

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Other

J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient Continuous-Wave Four-Wave Mixing and Self-Phase Modulation in a Bandgap-Engineered AlGaAs Waveguide,”in Conf. Lasers Electro-Optics 2012 of OSA Technical Digest (Optical Society of America, 2012), paper CW1A.4 (2012).

D. Duchesne, R. Morandotti, G. A. Siviloglou, G. El, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” in Proceedings of International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07 475–478 (2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Waveguide cross-section with the layer structure and the modal profile of the fundamental TM mode for a waveguide width w = 0.6 μm. b) Scanning electron microscope image of the cleaved facet.

Fig. 2
Fig. 2

Propagation loss as a function of waveguide width (blue circles) and coupling loss as a function of waveguide width (green diamonds).

Fig. 3
Fig. 3

Schematic of the experimental FWM-setup. PM: Power Meter; PBS: Polarization Beam Splitter; OSA: Optical Spectrum Analyzer.

Fig. 4
Fig. 4

Real part of gamma (blue line) and estimated n2 (green line) as a function of the waveguide width. Inset: Aeff as a function of the waveguide width calculated by numerical simulations.

Fig. 5
Fig. 5

a) FWM efficiency as a function of the pump power for a 3.5 mm long waveguide with w = 0.6 μm; red circles represent the experimental data while the blue line is the fitting function obtained by using the parameters indicated in the inset. b) Experimental spectra recorded at the output of the same waveguide with a coupled pump power of 13 mW.

Tables (1)

Tables Icon

Table 1 Performance comparison between different nonlinear semiconductor waveguides

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P i d l e r ( L ) P p r o b e ( L ) = ( η P p u m p ( 0 ) L e f f Re ( γ ) ) 2 .
A e f f = a N L S z d x d y N L S z d x d y .
η 1 = γ L e f f .
η 2 = 100 × P i d l e r P p r o b e P 2 p u m p L 2 .

Metrics