Abstract

The scatterings of TE- and TM-polarized evanescent wave on the surface of a tilted fiber Bragg grating (TFBG) with a 50 nm thick gold coating were investigated experimentally by observing radiation patterns from discontinuities in the coating. The scattering intensity for TM-polarized light is larger than for TE light when the evanescent wave propagates from the coating towards the discontinuity. The opposite occurs for light propagating from an uncoated section towards the coating edge. However in the latter case the scattering is much weaker. These results confirm that cladding modes with TE and TM polarization can be excited selectively with a TFBG, and that they scatter light differentially at discontinuities. These results are used to propose a simple polarimeter design based on total scattered light intensity monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, L.-Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [CrossRef]
  2. C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [CrossRef] [PubMed]
  3. L.-Y. Shao, Y. Shevchenko, J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
    [CrossRef] [PubMed]
  4. W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
    [CrossRef] [PubMed]
  5. Y. C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [CrossRef]
  6. L.-Y. Shao, J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
    [CrossRef] [PubMed]
  7. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2011).
  8. T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [CrossRef]
  9. Y. Shevchenko, C. Chen, M. A. Dakka, J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  10. C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
    [CrossRef]
  11. M. Z. Alam, J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
    [CrossRef]

2013 (3)

2011 (2)

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

2010 (4)

1996 (1)

Alam, M. Z.

Albert, J.

M. Z. Alam, J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
[CrossRef]

J. Albert, L.-Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
[CrossRef] [PubMed]

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

L.-Y. Shao, Y. Shevchenko, J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
[CrossRef] [PubMed]

L.-Y. Shao, J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
[CrossRef] [PubMed]

Y. Shevchenko, C. Chen, M. A. Dakka, J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[CrossRef] [PubMed]

Barry, S. T.

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

Bialiayeu, A.

Caucheteur, C.

J. Albert, L.-Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

Chen, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

Y. Shevchenko, C. Chen, M. A. Dakka, J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[CrossRef] [PubMed]

Dakka, M. A.

Erdogan, T.

Geng, R.

Gordon, P. G.

Griffiths, M. B. E.

Jian, S.

Liu, C.

Lu, Y. C.

Mandia, D. J.

Ning, T.

Shao, L.-Y.

Shevchenko, Y.

Sipe, J. E.

Voisin, V.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

Wang, C.

Wuilpart, M.

Zhang, F.

Zhang, Y.

Zhou, W.

Appl. Phys. Lett. (1)

C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

(a) Micrograph of a hole in a gold-coated TFBG and the corresponding NIR images of scattering for P- (b) and S- (c) polarized input light. Cladding mode light propagates from right to left in these images.

Fig. 3
Fig. 3

Simulated intensity distributions of the cladding modes for bare fiber and fiber with 50 nm of gold, in TE and TM polarizations, as a function of distance from the fiber surface. The grey shaded rectangle indicates the location of the coating.

Fig. 4
Fig. 4

Micrographs of (a) a particle (1.8 μm) on the surface the gold-coated TFBG and its NIR scattering ((b) to (k) denote the S (0°) - to P (90°) - polarized input light with a step of 10°, respectively).

Fig. 5
Fig. 5

Spectra of the Au coating-TFBG with different polarization input light.

Fig. 6
Fig. 6

Relative brightness levels of the pixels on the NIR images with different polarization angle, insets are the scattering images for polarization angles of 0°, 30°, 60°, 90°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = tan h 2 ( κ L )
κ = c E c o r e * Δ n ( x , y ) E r d x d y
Δ n ( x , y ) = Δ n cos ((4 π / Λ )(z cos ( θ ) + y sin ( θ ))

Metrics