Abstract

We demonstrate fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using UV Phase Mask technique with writing times shorter than 10 min. The shortest writing time was 6 minutes and 50 seconds and the longest writing time was 8 min and 50 sec. The FBGs were written in a 125 µm PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  2. K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  3. A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
    [CrossRef]
  4. Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [CrossRef]
  5. H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
    [CrossRef]
  6. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [CrossRef] [PubMed]
  7. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express 21(7), 8521–8534 (2013).
    [CrossRef] [PubMed]
  8. A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
    [CrossRef]
  9. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [CrossRef]
  10. A. Cusano, A. Cutolo, and J. Albert, eds., Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009), Chap. 15.
  11. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32(2), 109–111 (2007).
    [CrossRef] [PubMed]
  12. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
    [CrossRef]
  13. S. Law, G. Barton, M. van Eijkelenborg, C. Yan, R. Lwin, and J. Gan, “The effect of fabrication parameters on the cleaving of microstructured polymer optical fibers,” in Proceedings of SPIE The International Society for Optical Engineering, 62890D (2006).
    [CrossRef]
  14. M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  15. A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
  16. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [CrossRef] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [CrossRef]
  18. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [CrossRef] [PubMed]
  19. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
  20. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
    [CrossRef]
  21. D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
    [CrossRef]
  22. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [CrossRef] [PubMed]
  23. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [CrossRef] [PubMed]
  24. A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [CrossRef]
  25. T. A. Birks, J. C. Knight, P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  26. W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [CrossRef]

2013 (4)

2012 (5)

A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[CrossRef]

W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

2011 (4)

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

2008 (1)

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

2007 (2)

2006 (1)

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

2005 (1)

2003 (1)

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

1997 (3)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

T. A. Birks, J. C. Knight, P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[CrossRef] [PubMed]

Alberto, N. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Argyros, A.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Asatryan, A. A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Bang, O.

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[CrossRef]

W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Barton, G. W.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

Bilro, L. B.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

Birks, T. A.

Botten, L. C.

Chu, P. L.

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dobb, H.

Dubois, C.

Dupuis, A.

Emiliyanov, G.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gan, J.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

Gao, Y.

Godbout, N.

Guo, N.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Kalli, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Kan, D. J.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Kjaer, E.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Knight, J. C.

Komodromos, M.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kowal, D.

Lacroix, S.

Large, M.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Large, M. C.

Law, S. H.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Liu, H. B.

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

Liu, H. Y.

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

Lwin, R.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

Markos, C.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

Marques, C. A. F.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

Marshall, G. D.

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Mergo, P.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Nielsen, K.

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Nogueira, R. N.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Peng, G. D.

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Rasmussen, H. K.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Russell, P. S.

Sáez-Rodríguez, D.

Skorobogatiy, M.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Statkiewicz-Barabach, G.

Stecher, M.

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[CrossRef]

W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Tarnowski, K.

Town, G. E.

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

Urbanczyk, W.

van Eijkelenborg, M. A.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Webb, D. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Withford, M. J.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Yan, C.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Zhang, C.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

IEEE Photonics Technol. Lett. (5)

A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).

W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

IEEE Sens. J. (1)

A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Opt. Commun. (5)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003).
[CrossRef]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[CrossRef]

A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[CrossRef]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (1)

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008).
[CrossRef]

Other (3)

A. Cusano, A. Cutolo, and J. Albert, eds., Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009), Chap. 15.

S. Law, G. Barton, M. van Eijkelenborg, C. Yan, R. Lwin, and J. Gan, “The effect of fabrication parameters on the cleaving of microstructured polymer optical fibers,” in Proceedings of SPIE The International Society for Optical Engineering, 62890D (2006).
[CrossRef]

M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of a writing and interrogation setup.

Fig. 2
Fig. 2

Microscope image and Scanning Electron Microscope (SEM) image of the fiber facet.

Fig. 3
Fig. 3

Transmission loss of 3-ring PMMA fiber used in experiments.

Fig. 4
Fig. 4

Curves showing growth of the Bragg reflection with respect to time. FBGs a, b and c are written at full laser power while FBGs d, e and f are written at lower power. Arrows are showing the highest peak of the saturation region.

Fig. 5
Fig. 5

Bandwidths of fibers written at full laser power (100% power, a, b and c) and fibers written at lower laser power (72% power, d and e, 75% power f), presented at Fig. 4.

Tables (1)

Tables Icon

Table 1 Comparison of growth rates and final quality of the reflection peaks for the 6 fibers investigated in Fig. 4.

Metrics