Abstract

Silicon is not an electro-optic material by itself but the required second-order optical nonlinearity can be induced by breaking the inversion symmetry of the crystal lattice. Recently, an attractive approach has been demonstrated based on a surface-activation in a CMOS-compatible HBr dry etching process. In this work, we further investigate and quantify the second-order nonlinearity induced by this process. Using THz near-field probing we demonstrate that this simple and versatile process can be applied to locally equip silicon nanophotonic chips with micro-scale areas of electro-optic activity. The realization of a first fully integrated Mach-Zehnder modulator device – based on this process – is applied to quantify the nonlinearity to an effective χ(2) of 9 ± 1 pm/V. Analysis of the thermal stability of the induced nonlinearity reveals post-processing limitations and paths for further efficiency improvements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  2. C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
    [CrossRef]
  3. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  4. J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).
  5. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]
  6. T. Baehr-Jones, M. Hochberg, R. Soref, A. Scherer, “Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides,” J. Opt. Soc. Am. B 25(2), 261–268 (2008).
    [CrossRef]
  7. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
    [CrossRef] [PubMed]
  8. R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, R. Schmogrow, M. Baier, S. Koenig, D. Hillerkuss, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Silicon-Organic Hybrid (SOH) Modulator Generating up to 84 Gbit/s BPSK and M-ASK Signals,“ in Optical Fiber Communication Conference, Novel Modulators (Optical Society of America, 2013), paper OW4J.6.
    [CrossRef]
  9. S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
    [CrossRef] [PubMed]
  10. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
    [CrossRef] [PubMed]
  11. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
    [CrossRef] [PubMed]
  12. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21(21), 25324–25332 (2013).
    [CrossRef] [PubMed]
  13. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
    [CrossRef]
  14. T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
    [CrossRef]
  15. M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
    [CrossRef]
  16. Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1171–1179 (2004).
    [CrossRef]
  17. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
    [CrossRef]
  18. M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
    [CrossRef]
  19. R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
    [CrossRef]
  20. T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
    [CrossRef]
  21. W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).
  22. H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
    [CrossRef]
  23. Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  24. J. T. Robinson, K. Preston, O. Painter, M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [CrossRef] [PubMed]
  25. A. Aleali, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Optimization of stress-induced pockels effect in silicon waveguides for optical modulators,” in 10th IEEE International Conference on Group IV Photonics, 109–110 (2013).
    [CrossRef]
  26. W. Luo, W. Guo, F. Xu, Y.-Q. Lu, “Efficient surface second-harmonic generation in slot micro/nano-fibers,” Opt. Express 21(9), 11554–11561 (2013).
    [CrossRef] [PubMed]

2013 (3)

2012 (1)

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

2011 (3)

2010 (2)

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

2009 (3)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

2004 (1)

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1171–1179 (2004).
[CrossRef]

2003 (1)

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

1999 (1)

H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
[CrossRef]

1995 (1)

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

1989 (1)

R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
[CrossRef]

1970 (1)

W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).

Abel, S.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Agrawal, G. P.

Aizawa, H.

H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Baehr-Jones, T.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bohley, C.

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Caimi, D.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Chelnokov, A.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Chmielak, B.

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Ding, R.

Ding, Y. J.

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1171–1179 (2004).
[CrossRef]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Efavi, J.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Erni, R.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).

Fedeli, J.-M.

Flowers, M. C.

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

Fompeyrine, J.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Foord, J. S.

R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
[CrossRef]

Fournier, M.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Gardes, F.

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Georgieva, Y. M.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Gottlob, H.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Gould, M.

Guo, W.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Haring Bolivar, P.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Henschel, W.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Hochberg, M.

Hon, N. K.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

Huang, S.

Ishikawa, T.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Jackman, R. B.

R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

Jen, A. K.-Y.

Jonathan, N. B. H.

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

Kern, W.

W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kurz, H.

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21(21), 25324–25332 (2013).
[CrossRef] [PubMed]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).

Lemme, M.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, Y.

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

Lu, Y.-Q.

Luo, J.

Luo, W.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Marchiori, C.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Mashanovich, G.

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Matheisen, C.

Merget, F.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Mollenhauer, T.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Morris, A.

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Nagel, M.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Nakajima, T.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Niehusmann, J.

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Offrein, B. J.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Ogitsu, T.

H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
[CrossRef]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Painter, O.

Painter, O. J.

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Preston, K.

Price, R. J.

R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
[CrossRef]

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Puotinen, D.

W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).

Reed, G.

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Ripperda, C.

Robinson, J. T.

Rossel, C.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Rossell, M. D.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Scherer, A.

Schilling, J.

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

Schriever, C.

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

Shirao, T.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Shudo, K.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Solli, D. R.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

Soref, R.

Sousa, M.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Stöferle, T.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Tanaka, M.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Tanaka, Y.

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Thomson, D.

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Tsia, K. K.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

Tsuneyuki, S.

H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Wächter, M.

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Wahlbrink, T.

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21(21), 25324–25332 (2013).
[CrossRef] [PubMed]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Waldow, M.

Wehrspohn, R. B.

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

Xu, F.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1171–1179 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003).
[CrossRef]

Materials (1)

C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012).
[CrossRef]

Microel. Eng. (1)

T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005).
[CrossRef]

Nat Commun (1)

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Nature (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Opt. Express (6)

RCA Rev. (1)

W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).

Surf. Sci. (2)

H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999).
[CrossRef]

M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995).
[CrossRef]

Other (3)

A. Aleali, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Optimization of stress-induced pockels effect in silicon waveguides for optical modulators,” in 10th IEEE International Conference on Group IV Photonics, 109–110 (2013).
[CrossRef]

J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, R. Schmogrow, M. Baier, S. Koenig, D. Hillerkuss, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Silicon-Organic Hybrid (SOH) Modulator Generating up to 84 Gbit/s BPSK and M-ASK Signals,“ in Optical Fiber Communication Conference, Novel Modulators (Optical Society of America, 2013), paper OW4J.6.
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (18594 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Periodically activated sample based on SOI with a 220 nm high and 50 µm wide rib waveguide. Yellow areas are exclusively exposed to the plasma-activation. (b) Schematic of the THz near-field setup (VA: variable attenuator, C: chopper, FC: fiber coupler, PSF: polarization maintaining singlemode fiber TF: tapered fiber tip, NFP: near-field probe, TC-SH: temperature controlled sample holder).

Fig. 2
Fig. 2

Spatially resolved THz near-field measurement of locally plasma-activated silicon waveguides. (a) Periodically activated waveguide (Media 1) and (b) a logo patterned sample (inset shows the original logo).

Fig. 3
Fig. 3

THz emission of the differently annealed samples. (a) Time-domain THz field amplitude transients for different temperatures and a RCA cleaned sample. (b) THz amplitude gain factor referenced to a cleaned sample plotted against annealing temperature.

Fig. 4
Fig. 4

Schematic of the Mach-Zehnder Device: (a) Cross section of the waveguide with electrodes on top. (b) Top view of the device with push-pull electrode configuration and a given arm asymmetry of ΔL.

Fig. 5
Fig. 5

Experimental electro-optic characteristic of an exemplary plasma-activated MZI. (a) Transfer function at different electrical bias fields. (b) Field-modulation of a constructive maximum position including hysteresis measurement (sweep direction as indicated by arrows).

Metrics