Abstract

We report on few-cycle pulse characterization based on third harmonic generation dispersion scan (THG d-scan) measurements using thin films of different TiO2-SiO2 compositions as nonlinear media. By changing the TiO2 concentration in the thin film the band gap and therefore the position of the absorption edge were varied. The retrieved pulse durations from different nonlinear media agree within 5%, and the reconstructed pulse shapes prove to be immune against the absorption edges as well. The reason is the robust retrieval algorithm which takes the influence of wavelength dependent nonlinearity into account by a spectral weight function.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [CrossRef]
  2. F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [CrossRef]
  3. C. Iaconis, I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [CrossRef] [PubMed]
  4. D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
    [CrossRef]
  5. V. V. Lozovoy, I. Pastirk, M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
    [CrossRef] [PubMed]
  6. V. V. Lozovoy, B. Xu, Y. Coello, M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
    [CrossRef] [PubMed]
  7. B. Hou, J. H. Easter, J. A. Nees, Z. He, A. G. R. Thomas, K. Krushelnick, “Compressor optimization with compressor-based multiphoton intrapulse interference phase scan (MIIPS),” Opt. Lett. 37(8), 1385–1387 (2012).
    [CrossRef] [PubMed]
  8. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20(1), 688–697 (2012).
    [CrossRef] [PubMed]
  9. M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20(17), 18732–18743 (2012).
    [CrossRef] [PubMed]
  10. B. Alonso, M. Miranda, Í. J. Sola, H. Crespo, “Spatiotemporal characterization of few-cycle laser pulses,” Opt. Express 20(16), 17880–17893 (2012).
    [CrossRef] [PubMed]
  11. A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, U. Morgner, “Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR,” Opt. Express 20(3), 3076–3081 (2012).
    [CrossRef] [PubMed]
  12. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
    [CrossRef] [PubMed]
  13. T. Tsang, M. A. Krumbügel, K. W. Delong, D. N. Fittinghoff, R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21(17), 1381–1383 (1996).
    [CrossRef] [PubMed]
  14. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
    [CrossRef] [PubMed]
  15. F. Silva, M. Miranda, S. Teichmann, M. Baudish, M. Massicotte, F. Koppens, J. Biegert, and H. Crespo, “Near to mid-IR ultra-broadband third harmonic generation in multilayer graphene: few-cycle pulse measurement using THG dispersion-scan,” in CLEO Europe (2013), CWH1.5.
  16. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [CrossRef] [PubMed]
  17. M. Lappschies, B. Görtz, D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45(7), 1502–1506 (2006).
    [CrossRef] [PubMed]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), Chap. 10.5.
  19. O. Stenzel, The Physics of Thin Film Optical Spectra – An Introduction (Springer, 2005), Chap. 12.4.2.
  20. C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
    [CrossRef]

2012 (5)

2011 (1)

2009 (1)

F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

2002 (1)

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

2000 (1)

T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

1993 (1)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[CrossRef]

Alonso, B.

Arnold, C.

Arnold, C. L.

Binhammer, T.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Bock, M.

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Brabec, T.

T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

Coello, Y.

Crespo, H.

Dantus, M.

Das, S. K.

Delong, K. W.

Dölle, C.

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

Easter, J. H.

Elsaesser, T.

Fittinghoff, D. N.

Fordell, T.

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Görtz, B.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Grunwald, R.

Harth, A.

He, Z.

Hou, B.

Iaconis, C.

Ivanov, M.

F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Kane, D. J.

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[CrossRef]

Krausz, F.

F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

Krumbügel, M. A.

Krushelnick, K.

L’Huillier, A.

Lang, T.

Lappschies, M.

Lozovoy, V. V.

Miranda, M.

Morgner, U.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Nees, J. A.

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Pastirk, I.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Pfuch, A.

Rausch, S.

Reinhardt, C.

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

Ristau, D.

Schultze, M.

Schwanke, C.

Seeber, W.

Silva, F.

Simon, P.

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

Sola, Í. J.

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Steinmeyer, G.

Thomas, A. G. R.

Trebino, R.

T. Tsang, M. A. Krumbügel, K. W. Delong, D. N. Fittinghoff, R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21(17), 1381–1383 (1996).
[CrossRef] [PubMed]

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[CrossRef]

Tsang, T.

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

Walmsley, I. A.

Weigand, R.

Wellegehausen, B.

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

Xu, B.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Dölle, C. Reinhardt, P. Simon, B. Wellegehausen, “Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation,” Appl. Phys. B 75(6-7), 629–634 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[CrossRef] [PubMed]

Other (3)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007), Chap. 10.5.

O. Stenzel, The Physics of Thin Film Optical Spectra – An Introduction (Springer, 2005), Chap. 12.4.2.

F. Silva, M. Miranda, S. Teichmann, M. Baudish, M. Massicotte, F. Koppens, J. Biegert, and H. Crespo, “Near to mid-IR ultra-broadband third harmonic generation in multilayer graphene: few-cycle pulse measurement using THG dispersion-scan,” in CLEO Europe (2013), CWH1.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for THG d-scan. P1, P2: prisms, W1: wedges, DCM: double chirped mirrors, M1-4: mirrors, PC: computer.

Fig. 2
Fig. 2

THG-d-scan measurement using a 21 nm thick TiO2 layer: the measured and retrieved traces are shown in (a) and (b), respectively. (c) displays the retrieved pulse shape while (d) depicts the measured spectrum together with the retrieved spectral phase from d-scan(blue) and from SPIDER measurement (black curve).

Fig. 3
Fig. 3

THG-d-scan measurement using a 300 nm thick ZnS layer.

Fig. 4
Fig. 4

(a): Reconstructed pulse envelops of all 28 layers. The thinner dashed black lines represent the d-scan measurements; the thick blue line shows the SPIDER measurement. (b): Pulse durations in function of the band gap with errors of 5%. The line represents the pulse duration of the SPIDER measurement.

Fig. 5
Fig. 5

Absorption of layers of different thicknesses and compositions: 21 nm TiO2 (blue), 24 nm Ti70Si30O2 (orange), 237 nm Ti25Si75O2 (olive) and 300 nm ZnS (red). A typical THG spectrum is depicted in grey.

Fig. 6
Fig. 6

Peak of the THG signal in function of the band gap.

Fig. 7
Fig. 7

Normalized spectral weight functions µsample (ω)/µFused Silica(ω) for 21 nm TiO2 (blue), 24 nm Ti70Si30O2 (orange), 237 nm Ti25Si75O2 (olive) and 300 nm ZnS (red) layers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d = i , j ( S meas ( ω i , z j ) μ i ( ω i ) S sim ( ω i , z j ) ) 2
μ ( ω ) =   μ setup ( ω )     μ NL ( ω )
    μ setup ( ω ) =   R mir ( ω )   T optics ( ω )   D spec ( ω )

Metrics