Abstract

The far field spatial resolution of conventional optical lenses is of the order of the wavelength of light, due to loss in the far field of evanescent, near electromagnetic field components. We show that subwavelength details can be restored in the far field with an array of divergent nanowaveguides, which map the discretized, subwavelength image of an object into a magnified image observable with a conventional optical microscope. We demonstrate in simulations that metallic nanowires, nanocoaxes, and nanogrooves can be used as such nanowaveguides. Thus, an optical microscope capable of subwavelength resolution — a nanoscope — can be produced, with possible applications in a variety of fields where nanoscale optical imaging is of value.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Über einen neuen beleuchtungsapparat am mikroskop,” Archiv Für Mmikroskopische Anatomie. 9(1), 469–480 (1873).
    [CrossRef]
  2. Max Born and Emil Wolf, Principles of Optics, (Cambridge University, 1997).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  5. A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  7. I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  8. M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
    [CrossRef]
  9. G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
    [CrossRef] [PubMed]
  10. Y. Zhao, “Investigation of image magnification properties of hyperlenses formed by a tapered array of metallic wires using a spatially dispersive finite-difference time-domain method in cylindrical coordinates,” J. Opt. A. Pure Appl. Opt. 14, 035102 (2012).
  11. S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
    [CrossRef]
  12. K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
    [CrossRef]
  13. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
    [CrossRef]
  14. B. Rizal, F. Ye, P. Dhakal, T. C. Chiles, S. Shepard, G. McMahon, M. J. Burns, and M. J. Naughton, “Imprint-templated nanocoax array architecture: fabrication and utilization,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, B. Di Bartolo, J. Collins, and L. Silvestri, eds. (Springer, Dordrecht, 2013), Chap. 18.
  15. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  16. A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009).
    [CrossRef] [PubMed]
  17. Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012).
    [CrossRef]
  18. M. Kuttge, F. J. García de Abajo, A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
    [CrossRef] [PubMed]
  19. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
    [CrossRef] [PubMed]
  20. J. Jin, The Finite Element Method in Electromagnetics, (Wiley-IEEE, 2002).
  21. “We employ CST Microwave Studio, with material parameters for metals from P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  22. The transmitted field intensity is defined as the normalized magnitude of the time-averaged Poynting vector (extracted from simulation), averaged over the distal end of the wire.

2012 (3)

Y. Zhao, “Investigation of image magnification properties of hyperlenses formed by a tapered array of metallic wires using a spatially dispersive finite-difference time-domain method in cylindrical coordinates,” J. Opt. A. Pure Appl. Opt. 14, 035102 (2012).

Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012).
[CrossRef]

C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
[CrossRef] [PubMed]

2009 (2)

M. Kuttge, F. J. García de Abajo, A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
[CrossRef] [PubMed]

A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

2007 (5)

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

2005 (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1972 (1)

“We employ CST Microwave Studio, with material parameters for metals from P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

1873 (1)

E. Abbe, “Über einen neuen beleuchtungsapparat am mikroskop,” Archiv Für Mmikroskopische Anatomie. 9(1), 469–480 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Über einen neuen beleuchtungsapparat am mikroskop,” Archiv Für Mmikroskopische Anatomie. 9(1), 469–480 (1873).
[CrossRef]

Alekseyev, L. V.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Belov, P. A.

M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Cai, D.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Desiatov, B.

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Fernandez-Cuesta, I.

García de Abajo, F. J.

A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009).
[CrossRef] [PubMed]

M. Kuttge, F. J. García de Abajo, A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
[CrossRef] [PubMed]

Giersig, M.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Goykmann, I.

Herczynski, A.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Huang, Z. P.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Jacob, Z.

Kawata, S.

S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Kempa, K.

Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012).
[CrossRef]

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Kristensen, A.

Kuttge, M.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Levy, U.

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Manjavacas, A.

A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009).
[CrossRef] [PubMed]

Narimanov, E.

Naughton, M. J.

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Ono, A.

S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Peng, Y.

Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012).
[CrossRef]

Polman, A.

Ren, Z. F.

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Rybczynski, J.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Salandrino, A.

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Simovski, C. R.

M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Smith, C. L. C.

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, X.

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

Wang, Y.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, “Investigation of image magnification properties of hyperlenses formed by a tapered array of metallic wires using a spatially dispersive finite-difference time-domain method in cylindrical coordinates,” J. Opt. A. Pure Appl. Opt. 14, 035102 (2012).

Appl. Phys. Lett. (3)

K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012).
[CrossRef]

Archiv Für Mmikroskopische Anatomie. (1)

E. Abbe, “Über einen neuen beleuchtungsapparat am mikroskop,” Archiv Für Mmikroskopische Anatomie. 9(1), 469–480 (1873).
[CrossRef]

J. Opt. A. Pure Appl. Opt. (1)

Y. Zhao, “Investigation of image magnification properties of hyperlenses formed by a tapered array of metallic wires using a spatially dispersive finite-difference time-domain method in cylindrical coordinates,” J. Opt. A. Pure Appl. Opt. 14, 035102 (2012).

Nano Lett. (1)

A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (3)

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

“We employ CST Microwave Studio, with material parameters for metals from P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[CrossRef] [PubMed]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Other (4)

B. Rizal, F. Ye, P. Dhakal, T. C. Chiles, S. Shepard, G. McMahon, M. J. Burns, and M. J. Naughton, “Imprint-templated nanocoax array architecture: fabrication and utilization,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, B. Di Bartolo, J. Collins, and L. Silvestri, eds. (Springer, Dordrecht, 2013), Chap. 18.

Max Born and Emil Wolf, Principles of Optics, (Cambridge University, 1997).

J. Jin, The Finite Element Method in Electromagnetics, (Wiley-IEEE, 2002).

The transmitted field intensity is defined as the normalized magnitude of the time-averaged Poynting vector (extracted from simulation), averaged over the distal end of the wire.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of imaging with proposed near field optical magnifier comprised of nanowaveguides (white lines) supported by dielectric filler (blue). The subwavelength-size “object” is placed at the input ends of the nanowaveguides array (having waveguide separation d < λ). When illuminated, the image of the object is propagated along the waveguides and re-emitted as a magnified image at the output ends of the waveguides (with separation d > λ). Traditional optics are used to capture the magnified image.

Fig. 2
Fig. 2

X and z components of the electric field along silver nanowires 40 nm in diameter and 5 μm in length, excited with light of vacuum wavelength (a) λ = 800 nm and (b) 500 nm. SPP modes are clearly visible in each case, but with case (b) showing high attenuation over the length of the wire.

Fig. 3
Fig. 3

X and z components of the electric field along nanocoaxes 5 μm in length, excited with light of vacuum wavelength (a) λ = 800 nm and (b) 500 nm. In both cases, the coaxes have a 40 nm diameter inner silver core, a 20 nm thick vacuum annulus, and a 10 nm thick silver shield. The nanocoax modes appear to be a combination of classical coaxial cable TEM modes and SPP modes. Case (a) shows little attenuation while case (b) shows clear attenuation, albeit less than for the nanowire in Fig. 2(b).

Fig. 4
Fig. 4

Y components of the electric field along (a) a 40 nm square “u” groove and (b) a 40 nm wide by 80 nm deep “v” groove. Both grooves are 5 μm in length in a silver medium. The excitation in both cases has a vacuum wavelength λ = 500 nm. TEM modes are clearly visible in each case, with no visible attenuation, but with the “u” groove showing some evidence for beating.

Fig. 5
Fig. 5

X and z components of the electric field in a two nanowire NFOM. The wires are 40 nm in diameter, 2 μm in length, and made of silver. Their close ends are separated by 80 nm, center-to-center, while their distal ends are separated by 1 μm, center-to-center. They are excited by λ = 800 nm vacuum wavelength light, with the aperture positioned adjacent to the center of the top wire ((a) and (c)) or halfway between the two wires ((b) and (d)). Excitation of the top wire results in SPP modes highly localized to that wire alone, while excitation between the wires yields symmetric, low amplitude SPP modes on both wires.

Fig. 6
Fig. 6

Calculated normalized transmitted electric field intensity along the converging wires of Fig. 5, as the excitation aperture is moved along the x-axis, from halfway between both wires (x = 0) to above and below both wires (x = ± 100 nm). This intensity is found by averaging the normalized magnitude of the time-averaged Poynting vector in a cylinder 60 nm in radius surrounding the distal half of the wires. The inset shows the geometry.

Metrics