Abstract

The dependence of the plasmonic band gap on size of a one-dimensional plasmonic crystal with a rectangular cross-section has been investigated by cathodoluminescence, using a 200-keV scanning transmission electron microscope. The band edge character at points Γ and X changes in correlation with the corresponding Fourier component of the surface shape. The calculation by the rigorous coupled-wave analysis (RCWA) method reproduces well the observed size dependence of the band edge energies on terrace width and height, though some deviation in magnitude remains. The beam-scan spectral images clearly reveal symmetric and anti-symmetric characters of the standing waves of the band edge modes. The two modes at the band edges are different in the surface plasmon Polariton (SPP)-light conversion efficiency and exchange their energy positions by changing terrace width.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
    [CrossRef]
  4. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  5. Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
    [CrossRef]
  6. C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [CrossRef] [PubMed]
  7. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  8. T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
    [CrossRef]
  9. A. M. Lakhani, M. K. Kim, E. K. Lau, M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
    [CrossRef] [PubMed]
  10. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
    [CrossRef]
  11. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
    [CrossRef] [PubMed]
  12. J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
    [CrossRef]
  13. T. Suzuki, N. Yamamoto, “Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal,” Opt. Express 17(26), 23664–23671 (2009).
    [CrossRef] [PubMed]
  14. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  15. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [CrossRef]
  16. G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
    [CrossRef]
  17. C. Brucoli, L. Martín-Moreno, “Effect of defect depth on surface plasmon scattering by subwavelength surface defects,” Phys. Rev. B 83(7), 075433 (2011).
    [CrossRef]
  18. H. Iwase, D. Englund, J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010).
    [CrossRef] [PubMed]
  19. T. Okamoto, S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20(5), 5168–5177 (2012).
    [CrossRef] [PubMed]
  20. K. Takeuchi, N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19(13), 12365–12374 (2011).
    [CrossRef] [PubMed]
  21. M. Honda, N. Yamamoto, “Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities,” Opt. Express 21(10), 11973–11983 (2013).
    [CrossRef] [PubMed]
  22. N. Yamamoto, The Transmission Electron Microscope (InTech, 2011), Chap. 15.
  23. F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
    [CrossRef] [PubMed]
  24. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
    [CrossRef]
  25. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
    [CrossRef] [PubMed]

2013 (2)

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

M. Honda, N. Yamamoto, “Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities,” Opt. Express 21(10), 11973–11983 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (3)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

H. Iwase, D. Englund, J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010).
[CrossRef] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

T. Suzuki, N. Yamamoto, “Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal,” Opt. Express 17(26), 23664–23671 (2009).
[CrossRef] [PubMed]

2008 (2)

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[CrossRef] [PubMed]

2007 (2)

Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

2006 (3)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

2004 (1)

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Ahn, Y. H.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Atwater, H.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Baudrion, A.-L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Boudarham, G.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Brolo, A. G.

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

Brucoli, C.

C. Brucoli, L. Martín-Moreno, “Effect of defect depth on surface plasmon scattering by subwavelength surface defects,” Phys. Rev. B 83(7), 075433 (2011).
[CrossRef]

Chen, Y.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Dereux, A.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Devaux, E.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Ebbesen, T.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Ebbesen, T. W.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Englund, D.

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Feth, N.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

García de Abajo, F.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[CrossRef] [PubMed]

García de Abajo, J.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

Girard, C.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Gong, Y.

Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

González, M. U.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Honda, M.

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Iwase, H.

Jonsson, F.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Kawata, S.

T. Okamoto, S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20(5), 5168–5177 (2012).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Kihm, J. E.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Kim, D. S.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Kim, J.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Kim, M. K.

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Kociak, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[CrossRef] [PubMed]

Koenderink, A. F.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Krenn, J. R.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Lacroute, Y.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Lakhani, A. M.

Lau, E. K.

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Lévêque, G.

G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Lienau, C.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Linden, S.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

Martin, O. J. F.

G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Martín-Moreno, L.

C. Brucoli, L. Martín-Moreno, “Effect of defect depth on surface plasmon scattering by subwavelength surface defects,” Phys. Rev. B 83(7), 075433 (2011).
[CrossRef]

Myroshnychenko, V.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20(5), 5168–5177 (2012).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Park, D. J.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Park, Q. H.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Ropers, C.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Simonen, J.

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

Stepanov, A. L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Suzuki, T.

Takeuchi, K.

Valsecchi, C.

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

Vuckovic, J.

H. Iwase, D. Englund, J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010).
[CrossRef] [PubMed]

Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

Weeber, J. C.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Weeber, J.-C.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Wegener, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

Wu, M. C.

Yamamoto, N.

Yoon, Y. C.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

J. Appl. Phys. (1)

G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Langmuir (1)

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

Nano Lett. (1)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

Phys. Rev. B (6)

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009).
[CrossRef]

C. Brucoli, L. Martín-Moreno, “Effect of defect depth on surface plasmon scattering by subwavelength surface defects,” Phys. Rev. B 83(7), 075433 (2011).
[CrossRef]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007).
[CrossRef]

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010).
[CrossRef] [PubMed]

F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008).
[CrossRef] [PubMed]

Other (3)

N. Yamamoto, The Transmission Electron Microscope (InTech, 2011), Chap. 15.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Structure of a 1D PlC, (b) a cross-section of a 1D PlC, (c) arrangement of the angle-resolved measurement, and (d) dispersion relation of the SPP in a 1D PlC. The red line indicates the light line, and red circles indicate band gaps at the point Γ and X.

Fig. 2
Fig. 2

ARS patterns taken from 1D PlCs of a period of 600 nm and a height of 70 nm with terrace widths of (a) 100 nm, (b) 200 nm, (c) 300 nm, (d) 400 nm, and (e) 500 nm. (f) Emission spectra from the PlCs with various D/Ps taken in the surface normal direction.

Fig. 3
Fig. 3

ARS patterns taken from the PlCs with (a)–(c) 30 nm, (d)–(f) 70 nm, and (g)–(i) 100 nm height, and D/P values of 1/4, 1/2, and 3/4, from left to right. (j)–(l) Simulated images composed of the absorption spectra as a function of incident angle, calculated for the 70-nm tall PlC using the RCWA method.

Fig. 4
Fig. 4

(a)–(i) BSS images taken from the 1D PlCs with terrace heights of (a)–(c) 30 nm, (d)–(f) 70 nm, and (g)–(i) 100 nm, and with D/P values of nearly 1/4, 1/2, and 3/4 from left to right. The images correspond to the ARS patterns in Figs. 3(a)3(i).

Fig. 5
Fig. 5

(a) A D/P dependence of the band edge energies of the PlC at Γ. Black, red, and blue lines show data from the PlCs with a terrace height h of 30 nm, 70 nm, and 100 nm, respectively. Solid and open circles indicate the S and A modes. (b) The background absorption map calculated by the RCWA method for the 70-nm tall PlC, showing the D/P and (c) that showing h dependence of the band-edge energies of the PlC with D/P = 3/4. Red and white plots indicate the S and A mode data, respectively. A solid and dotted white lines are calculated by Eq. (5), indicating the band edge energies of the S and A modes, respectively.

Fig. 6
Fig. 6

(a) Dispersion patterns transformed from the ARS patterns of the PlCs with various terrace widths. The PlC has a period of 800 nm and height of 50 nm. The right edge in each pattern corresponds to the light line. (b) Dispersion patterns calculated by the RCWA method corresponding to those in (a). (c) Dependence of the band edge energies at X on D/P. A solid white line indicates the energy of a SPP on a flat surface at k p = 3 π / 2 P , and a dotted white line shows the light line limit.

Fig. 7
Fig. 7

(a) A BSS image taken from the 1D PlC with P = 800nm, D = 413 nm, and h = 50 nm at X. (b) The spatial distribution of the electric field strength of the standing SPP wave in the 1D PlC of D/P = 1/2 calculated by the RCWA method under the same condition as in (a). (c),(d) The z-component of the electric field strength at the higher and lower band edge energies in the xz plane.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k / / k p = G ,
E S P P = E p h ,
C 1 exp ( i 2 π x P ) + C 1 exp ( i 2 π x P ) ,
ψ S ( x ) 2 cos ( 2 π x P ) , ψ A ( x ) 2 sin ( 2 π x P ) .
ψ S ( x ) 2 cos ( 3 π x P ) , ψ A ( x ) 2 sin ( 3 π x P ) ,
( ω A , S c ) = [ ( ω 0 c ) 2 { 1 ( k p h 2 ) 2 } ± 2 ( k p h 2 ) k p 2 ε 0 ε { 1 7 2 ( k p h 2 ) 2 } ] 1 2
k p = 2 π P = ω 0 c ε 0 ε ( ω 0 ) ε ( ω 0 ) + ε 0
h n = h n π sin ( n π D P )

Metrics