Abstract

The contributions of localized surface plasmon resonance (LSPR) and Drude (free electrons) absorption to the complex dielectric function of ultrathin Au films were investigated with spectroscopic ellipsometry. When the Au film thickness is thinner than ~10 nm, Au nanoparticles (NPs) are formed as a result of the discontinuity in the films, leading to the emergence of LSPR of Au NPs; and the LSPR exhibits a splitting when the films thinner than ~8 nm, which could be attributed to the near-field coupling of the Au NPs and/or the inhomogeneous polarizations of the Au NPs. On the other hand, the delocalization of electrons in Au NPs due to the aggregation of Au NPs in a thicker film leads to an increase in the free-electron absorption and a suppression of the LSPR.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [CrossRef] [PubMed]
  2. K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  3. T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [CrossRef]
  4. Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
    [CrossRef]
  5. X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
    [CrossRef]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 2.
  7. P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
    [CrossRef]
  8. S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
    [CrossRef] [PubMed]
  9. R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).
  10. H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
    [CrossRef] [PubMed]
  11. T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  12. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203(359-371), 385–420 (1904).
    [CrossRef]
  13. D. A. G. Bruggeman, “Calculation of various physical constants of heterogeneous substances. I. dielectric constant and conductivity of mixtures of isotropic substances,” Ann. Phys. 24, 636–664 (1935).
    [CrossRef]
  14. R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
    [CrossRef]
  15. A. Meessen, “The anomalous infra-red absorption of alkali metals and collective oscillations in small metal particles,” J. Phys. 33(4), 371–381 (1972).
    [CrossRef]
  16. A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  17. P. Romaniello, P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
    [CrossRef] [PubMed]
  18. R. Lässer, N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37(6), 507–509 (1981).
    [CrossRef]
  19. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  20. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), Chap. 3.
  21. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [CrossRef]
  22. H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
    [CrossRef] [PubMed]
  23. T. W. H. Oates, A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
    [CrossRef]
  24. A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
    [CrossRef]

2009 (1)

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

2007 (2)

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Romaniello, P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. W. H. Oates, A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

2003 (1)

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[CrossRef] [PubMed]

2001 (1)

A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

1998 (1)

1991 (1)

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

1981 (1)

R. Lässer, N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37(6), 507–509 (1981).
[CrossRef]

1976 (1)

P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
[CrossRef]

1973 (1)

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

1972 (1)

A. Meessen, “The anomalous infra-red absorption of alkali metals and collective oscillations in small metal particles,” J. Phys. 33(4), 371–381 (1972).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Calculation of various physical constants of heterogeneous substances. I. dielectric constant and conductivity of mixtures of isotropic substances,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203(359-371), 385–420 (1904).
[CrossRef]

Abeles, B.

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

Atay, T.

T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Barrera, R. G.

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Calculation of various physical constants of heterogeneous substances. I. dielectric constant and conductivity of mixtures of isotropic substances,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Clippe, P.

P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
[CrossRef]

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

Cohen, R. W.

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

Coutts, M. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

de Boeij, P. L.

P. Romaniello, P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[CrossRef] [PubMed]

Del Castillo Mussot, M.

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Djurisic, A. B.

Elazar, J. M.

El-Sayed, M. A.

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[CrossRef] [PubMed]

Evrard, R.

P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203(359-371), 385–420 (1904).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

He, S.

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

Henry, A.-I.

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

Hilger, A.

A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Huang, W.

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Jiang, L.

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

Kooij, E. S.

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

Kreibig, U.

A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Lässer, R.

R. Lässer, N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37(6), 507–509 (1981).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Li, X.

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

Link, S.

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[CrossRef] [PubMed]

Lucas, A. A.

P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
[CrossRef]

Majewski, M. L.

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Matsubara, S.

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Meessen, A.

A. Meessen, “The anomalous infra-red absorption of alkali metals and collective oscillations in small metal particles,” J. Phys. 33(4), 371–381 (1972).
[CrossRef]

Mochán, W. L.

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Monsivais, G.

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Mücklich, A.

T. W. H. Oates, A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Nogami, M.

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Nordlander, P.

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Nurmikko, A. V.

T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Oates, T. W. H.

T. W. H. Oates, A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Pileni, M.-P.

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

Poelsema, B.

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Qian, J.

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

Rakic, A. D.

Romaniello, P.

P. Romaniello, P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Shi, J.

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Smith, N. V.

R. Lässer, N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37(6), 507–509 (1981).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Tenfelde, M.

A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Van Duyne, R. P.

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Villaseor, P.

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wormeester, H.

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Zhan, Q.

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

Acc. Chem. Res. (1)

H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Ann. Phys. (1)

D. A. G. Bruggeman, “Calculation of various physical constants of heterogeneous substances. I. dielectric constant and conductivity of mixtures of isotropic substances,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

S. Link, M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Colloid Surf. A Physicochem. Eng. Aspects (1)

X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, “Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing,” Colloid Surf. A Physicochem. Eng. Aspects 332(2-3), 172–179 (2009).
[CrossRef]

J. Chem. Phys. (2)

H. Wormeester, A.-I. Henry, E. S. Kooij, B. Poelsema, M.-P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006).
[CrossRef] [PubMed]

P. Romaniello, P. L. de Boeij, “The role of relativity in the optical response of gold within the time-dependent current-density-functional theory,” J. Chem. Phys. 122(16), 164303 (2005).
[CrossRef] [PubMed]

J. Phys. (1)

A. Meessen, “The anomalous infra-red absorption of alkali metals and collective oscillations in small metal particles,” J. Phys. 33(4), 371–381 (1972).
[CrossRef]

J. Phys. Chem. B (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Nano Lett. (3)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. Atay, J.-H. Song, A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Nanotechnology (2)

T. W. H. Oates, A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Y. Yang, S. Matsubara, M. Nogami, J. Shi, W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology 17(11), 2821–2827 (2006).
[CrossRef]

Philos. Trans. R. Soc. London (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rev. B (2)

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[CrossRef]

P. Clippe, R. Evrard, A. A. Lucas, “Aggregation effect on the infrared absorption spectrum of small ionic crystals,” Phys. Rev. B 14(4), 1715–1721 (1976).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

R. G. Barrera, M. Del Castillo Mussot, G. Monsivais, P. Villaseor, W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991).

Solid State Commun. (1)

R. Lässer, N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37(6), 507–509 (1981).
[CrossRef]

Other (3)

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), Chap. 3.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

HRSEM images of the ultrathin Au films with the nominal thicknesses of 4-8 nm on the SiO2 layer.

Fig. 2
Fig. 2

Absorbance spectra of the ultrathin Au films with various thicknesses on quartz substrate.

Fig. 3
Fig. 3

SE spectral fittings of the Au NP films with the film thicknesses of 4-8 nm on the SiO2 layer that is thermally grown on a silicon substrate. The ellipsometric angles Ψ and Δ are measured at the incident angle of 75°.

Fig. 4
Fig. 4

(a) Real part ( ε m , 1 ) and (b) imaginary part ( ε m , 2 ) of the complex dielectric function of the Au NPs of the Au NP films with the film thicknesses of 4-8 nm. The complex dielectric functions of the continuous Au film with the thickness of 10 nm and the bulk Au (Ref. 19) are included in the two figures for comparison. (c) The real part ( ε e , 1 ) and (d) imaginary part ( ε e , 2 ) of the effective complex dielectric function of the Au NP films with the film thicknesses of 4-8 nm.

Fig. 5
Fig. 5

(a) Refraction index n and (b) extinction coefficient k of the Au NPs of the Au NP films with film thicknesses of 4-8 nm. The optical constants of both the continuous Au film with thickness of 10 nm and the bulk Au (Ref. 19) are included for comparison.

Fig. 6
Fig. 6

Red-shifts of the resonance energies of SPR 1 and SPR 2 with the thickness of the Au NP films.

Fig. 7
Fig. 7

Contributions of the Drude band (a) and LSPR band (b) to the extinction coefficient k of the Au NPs of the Au NP films with film thicknesses of 4-8 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε e ε m ( ε e ε m ) L i + ε m = ( 1 Q ) ε i ε m ( ε i ε m ) L i + ε m .
ε m ( E ) = ( 1 f 0 E p 2 E 2 + i Γ 0 E ) + j = 1 k f j E p 2 E j 2 E 2 i Γ j E .

Metrics