Abstract

We report the first Kerr-lens mode-locked polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers, with pulse duration of 125 fs at a pulse repetition rate of 160 MHz, emitting around 2.3 – 2.4 µm. The mode-locked lasers were pumped by a radiation of 1550 nm Er-fiber amplifier seeded by semiconductor laser. The long-term stable Kerr-lens mode-locked laser operation with the output power of 30 mW (Cr2+:ZnS) and 60 mW (Cr2+:ZnSe) was obtained. We also demonstrate amplification of the fs laser pulse train in a cw pumped single-pass polycrystalline Cr2+:ZnS laser amplifier.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
    [CrossRef]
  2. http://www.ipgphotonics.com/Collateral/Documents/English-US/FFML_IPG_datasheet.pdf
  3. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [CrossRef] [PubMed]
  4. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [CrossRef] [PubMed]
  5. V. V. Fedorov, D. V. Martyshkin, M. S. Mirov, I. S. Moskalev, S. Vasyliev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI mid-Infrared laser materials for the 3 to 8 um region,” in The Conference on Lasers and Electro-Optics (CLEO)/The International Quantum Electronics Conference (IQEC), (invited), San Jose, CA, June 11–13, 2013.
  6. C. Pollock, N. Brilliant, D. Gwin, T. J. Carrig, W. J. Alford, J. B. Heroux, W. I. Wang, I. Vurgaftman, and J. R. Meyer, “Mode locked and Q-switched Cr:ZnSe laser using a semiconductor saturable absorbing mirror (SESAM),” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuA6.
  7. I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
    [CrossRef]
  8. E. Sorokin, N. Tolstik, K. I. Schaffers, I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
    [CrossRef] [PubMed]
  9. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
    [CrossRef]
  10. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA10.
  11. M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
    [CrossRef] [PubMed]
  12. N. Tolstik, E. Sorokin, I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013).
    [CrossRef] [PubMed]
  13. M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
    [CrossRef]
  14. N. Tolstik, I. T. Sorokina, and E. Sorokin, “Watt-level kerr-lens mode-locked Cr:ZnS laser at 2.4 μm,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1H.2.
  15. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Self-starting kerr-mode-locked polycrystalline Cr2+:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFI3.
  16. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
    [CrossRef]
  17. F. Salin, “Ultrafast solid-state amplifiers,” in Ultrafast lasers: Technology and applications, M.E. Fermann, A. Galvanauskas, G. Sucha, eds. (Marcel Dekker 2003), Chap. 2, pp. 61–88.

2013

2012

2011

2010

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

2009

2007

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Byer, R. L.

Cankaya, H.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
[CrossRef] [PubMed]

Cizmeciyan, M. N.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
[CrossRef] [PubMed]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

Fermann, M.

Hänsch, T. W.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Hartl, I.

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Jiang, J.

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

Kurt, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
[CrossRef] [PubMed]

Leindecker, N.

Marandi, A.

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

Picqué, N.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Schaffers, K. I.

Schunemann, P. G.

Sennaroglu, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
[CrossRef] [PubMed]

Sorokin, E.

Sorokina, I. T.

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

Tolstik, N.

Vodopyanov, K. L.

Appl. Phys. B

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012).
[CrossRef]

J. Sel. Top. Quantum Electron.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Laser & Photon. Rev.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

F. Salin, “Ultrafast solid-state amplifiers,” in Ultrafast lasers: Technology and applications, M.E. Fermann, A. Galvanauskas, G. Sucha, eds. (Marcel Dekker 2003), Chap. 2, pp. 61–88.

http://www.ipgphotonics.com/Collateral/Documents/English-US/FFML_IPG_datasheet.pdf

V. V. Fedorov, D. V. Martyshkin, M. S. Mirov, I. S. Moskalev, S. Vasyliev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI mid-Infrared laser materials for the 3 to 8 um region,” in The Conference on Lasers and Electro-Optics (CLEO)/The International Quantum Electronics Conference (IQEC), (invited), San Jose, CA, June 11–13, 2013.

C. Pollock, N. Brilliant, D. Gwin, T. J. Carrig, W. J. Alford, J. B. Heroux, W. I. Wang, I. Vurgaftman, and J. R. Meyer, “Mode locked and Q-switched Cr:ZnSe laser using a semiconductor saturable absorbing mirror (SESAM),” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuA6.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[CrossRef]

N. Tolstik, I. T. Sorokina, and E. Sorokin, “Watt-level kerr-lens mode-locked Cr:ZnS laser at 2.4 μm,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1H.2.

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Self-starting kerr-mode-locked polycrystalline Cr2+:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFI3.

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Kerr-lens mode-locked polycrystalline Cr2+:ZnSe/ZnS laser. HR – high reflectors, OC – output coupler, FS, YAG – dispersion compensation plates, L – pump focusing lens. The laser is pumped at 1550 nm by a radiation of narrowband semiconductor laser (seed) amplified to 1 W in Er- doped fiber amplifier (EDFA). AB – distance between output coupler and curved mirror, CD – distance between plane HR mirror and another curved mirror, BC – distance between curved mirrors.

Fig. 2
Fig. 2

Emission spectra (left) and autocorrelation traces (right) for Kerr-lens mode-locked polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers. FWHM bandwidth of the spectra are 75 nm for Cr2+:ZnSe and 45 nm for Cr2+:ZnS. 125 fs pulse duration can be derived from the autocorrelation trace, emission spectrum of Cr2+:ZnS laser assuming sech2 pulse profile and time-bandwidth product ∆τ∆ν = 0.315. Distortions of the autocorrelation trace and the spectrum of Cr2+:ZnSe laser indicate a chirped pulse and an increase of the time-bandwidth product. We roughly estimate the pulse duration of Cr2+:ZnSe laser as 100 – 130 fs.

Fig. 3
Fig. 3

Autocorrelation traces for Kerr-lens mode-locked polycrystalline Cr2+:ZnSe laser at different pulse repetition rates.

Fig. 4
Fig. 4

Schematic of polycrystalline Cr2+:ZnS fs laser amplifier. HR – high reflectors, DM – dichroic mirrors, L – focusing and collimation lenses. The amplifier is pumped by cw output of EDFA at 1550 nm.

Fig. 5
Fig. 5

Left: Output power of fs laser amplifier vs cw pump power. The amplifier was seeded by fs pulses at 160 MHz repetition rate (solid curve/symbols) and by cw laser with the same beam parameters, for comparison (dashed line, open symbols) Right: Autocorrelation traces of the fs pulses at the amplifier input (a), at the amplifier output with the amplifier’s pump turned off (b), and at the amplifier output at 10-W cw amplifier’s pump (c).

Metrics