Abstract

Silver ions were driven into glass by a direct current electric field-assisted ion exchange technique. The silver ion exchanged glass was then irradiated by laser pulses of 10 ns and 10 ps in length at 355 nm for comparison purposes. In both cases, laser irradiation led to the formation of a metallic-like film at the surface of the ion exchange glass. Scanning electron microscopy showed that the films consist of a very dense single layer of silver nanoparticles with similar particle sizes and separation. Irradiation with different laser parameters shows no significant difference in transmission spectra and modification width between ps- and ns-pulsed lasers. Particle sizes and separation at the surface are increasing with increasing laser power, and are larger for picosecond pulsed laser irradiation. It is also shown that the film formation is a thermal process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [CrossRef]
  3. S. Wackerow, G. Seifert, A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express 1(7), 1224–1231 (2011).
    [CrossRef]
  4. S. Wackerow, A. Abdolvand, “Laser-assisted one-step fabrication of homogeneous glass–silver composite,” Appl. Phys., A Mater. Sci. Process. 109, 1–5 (2012).
  5. A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [CrossRef]
  7. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [CrossRef]
  9. M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  10. P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974).
    [CrossRef]
  11. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106(32), 7729–7744 (2002).
    [CrossRef]
  12. S. Wackerow, A. Abdolvand, “Optical analyses of the formation of a silver nanoparticle-containing layer in glass,” Opt. Express 20(21), 23227–23234 (2012).
    [CrossRef] [PubMed]
  13. J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light (Springer, 2004), pp. 247–290.
  14. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  15. G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).
  16. J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
    [CrossRef]
  17. H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
    [CrossRef]
  18. A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).
  19. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [CrossRef]
  20. M. N. Özıñsık, Heat Conduction (Wiley (New York), 1993), Vol. 2.
  21. K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
    [CrossRef]
  22. D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).
  23. R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
    [CrossRef]
  24. S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
    [CrossRef]

2013 (1)

G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).

2012 (2)

S. Wackerow, A. Abdolvand, “Optical analyses of the formation of a silver nanoparticle-containing layer in glass,” Opt. Express 20(21), 23227–23234 (2012).
[CrossRef] [PubMed]

S. Wackerow, A. Abdolvand, “Laser-assisted one-step fabrication of homogeneous glass–silver composite,” Appl. Phys., A Mater. Sci. Process. 109, 1–5 (2012).

2011 (1)

2010 (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

2008 (2)

M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

2007 (1)

S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
[CrossRef]

2003 (2)

D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).

A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

2002 (2)

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106(32), 7729–7744 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

2000 (1)

K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

1998 (3)

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[CrossRef] [PubMed]

A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

1993 (1)

A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).

1990 (1)

R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
[CrossRef]

1982 (1)

1974 (1)

P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974).
[CrossRef]

1960 (1)

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

Abdolvand, A.

G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).

S. Wackerow, A. Abdolvand, “Optical analyses of the formation of a silver nanoparticle-containing layer in glass,” Opt. Express 20(21), 23227–23234 (2012).
[CrossRef] [PubMed]

S. Wackerow, A. Abdolvand, “Laser-assisted one-step fabrication of homogeneous glass–silver composite,” Appl. Phys., A Mater. Sci. Process. 109, 1–5 (2012).

S. Wackerow, G. Seifert, A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express 1(7), 1224–1231 (2011).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Aussenegg, F. R.

Bhattacharya, D.

R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
[CrossRef]

Buerhop, C.

A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).

Campion, A.

A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Carey, J. D.

S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
[CrossRef]

Collier, C. P.

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

Dragoman, D.

M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Gödeke, D.

D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Heath, J. R.

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

Helebrant, A.

A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).

Henley, S. J.

S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
[CrossRef]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Ikushima, A. J.

K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Kamat, P. V.

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106(32), 7729–7744 (2002).
[CrossRef]

Kambhampati, P.

A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Kilty, P. A.

P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974).
[CrossRef]

Krenn, J. R.

Leitner, A.

Liu, J. M.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Müller, M.

D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Narayan, J.

R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Quinten, M.

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rüssel, C.

D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).

Sachtler, W. M. H.

P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974).
[CrossRef]

Saito, K.

K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Saykally, R. J.

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

Schick, H. L.

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

Seifert, G.

Shiang, J. J.

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Silva, S. R. P.

S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
[CrossRef]

Singh, R. K.

R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Tang, G.

G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Wackerow, S.

Weissmann, R.

A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Wackerow, A. Abdolvand, “Laser-assisted one-step fabrication of homogeneous glass–silver composite,” Appl. Phys., A Mater. Sci. Process. 109, 1–5 (2012).

Appl. Surf. Sci. (1)

S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007).
[CrossRef]

Catal. Rev. (1)

P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974).
[CrossRef]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[CrossRef]

Chem. Soc. Rev. (1)

A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Glass Sci Technol (1)

D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).

Glass Technol (1)

A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).

Int. J. Adv. Manuf. Tech (1)

G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

J. Phys. Chem. B (2)

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106(32), 7729–7744 (2002).
[CrossRef]

J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

M. N. Özıñsık, Heat Conduction (Wiley (New York), 1993), Vol. 2.

J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light (Springer, 2004), pp. 247–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Squared width of the laser-induced modifications versus fluence on a logarithmic scale for both ps (red) and ns (blue) pulsed lasers. Top axis shows laser pulse energies for comparison, the right axis shows the actual (non-squared) width values. The width of the area with particles in the volume (triangles) has been measured by transmission optical microscopy. Similarly the width of the area with surface modification (filled circles) was measured by reflection microscopy. Linear fits shown as red and blue lines define the threshold fluence at the fluence axis intercept.

Fig. 2
Fig. 2

Images of laser-irradiated areas. (a): ps-irradiated squares. Energies were, from left to right, in the top row: 2, 3, 4 µJ, middle row: 5, 6, 8 µJ, bottom row: 10, 12, 14 µJ. (b): ns-irradiated squares. Top row: 2.4, 2.9, 3.3 µJ, middle: 4.0, 5.5, 6.5µJ, bottom: 7.5, 10, 12µJ. These two images were taken with a microscope in reflection mode using a white background. Image (c) also shows the squares made by ns irradiation (same as (b)), but with a black background. This reduces the effect of light transmitted through the glass, reducing the effect of particles inside the glass, and therefore enhancing visibility of surface reflection.

Fig. 3
Fig. 3

Extinction spectra from areas irradiated with ps pulses (a) and ns pulses (b). There is a plasmon band showing for all irradiated squares, centered at 450nm - typical for silver nanoparticles. There is also a nearly constant background, which is measured for irradiation with energy per pulse from 4 µJ upwards. It also becomes stronger with increasing pulse energy.

Fig. 4
Fig. 4

Highly magnified SEM images of the centers of lines, both written with pulse energies of 12 µJ, with ps (a) and ns (b) pulses. The particle diameters are ~100 nm for ps, and 60 nm for ns irradiations, with a small variation in particle sizes and separation.

Fig. 5
Fig. 5

Plot of particle diameters and inter-particle distances (from center to center) determined for different laser parameters.

Fig. 6
Fig. 6

Simulated heating of ion exchanged glass for conditions used in the experiments. The vertical dotted black line marks the absorption length of non-irradiated glass of 43 µm. The dashed blue curve shows the maximum temperature increase for irradiation with 3 µJ pulses. Solid black curve shows maximum temperature increase for irradiation with 6 µJ pulses. Dotted red curve shows the maximum effect on temperature caused by a single pulse of 6 µJ. Notable is the 650 K temperature increase for 3 µJ irradiation at an absorption length of 43 µm. This is adequate to explain the observed generation of nanoparticles inside the glass. For laser pulse energy of 6 µJ bubble formation is observed. This requires heating over the boiling point at about 2400 °C. Such temperatures would be achieved with a constant absorption length of 10 µm. In the actual experiment larger and smaller absorption lengths occur.

Tables (1)

Tables Icon

Table 1 Fitting parameters for modification widths shown in Fig. 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d 2 = 8 w 0 2 ln ( F 0 / F t h ) .
l ( t ) = ( k t / ρ c p ) 1 / 2 = ( D t ) 1 / 2 ,
T ( x , y , z , t ) t = [ D T ( x , y , z , t ) ] + 1 ρ c p Q ( x , y , z , t ) t ,
Q ( x , y , z , t ) t = n = 0 N 1 Q 0 δ ( t n f ) exp [ ( x v n / f ) 2 + y 2 w 0 2 z l a ] ,
T ( t , x , y , z ) = n = 0 N 1 Δ T 1 ( t n / f , x v n / f , y , z ) + T 0 ,
Δ T 1 ( t ' , x ' , y , z ) = E p ρ c p π ( w 0 2 + 4 D t ' ) exp ( x ' 2 y 2 w 0 2 + 4 D t ' ) [ f ( z , t ' ) z + f ( z , t ' ) z ] .
f z ( z , t ' ) = 1 2 l a exp ( z + D t ' / l a l a ) e r f c ( z + 2 D t ' / l a 2 D t ' ) .

Metrics