Abstract

Optical wavelength conversion (OWC) is expected to be a desirable function in future optical transparent networks. Since high-order quadrature amplitude modulation (QAM) is more sensitive to the phase noise, in the OWC of high-order QAM signals, it is crucial to suppress the extra noise introduced in the OWC subsystem, especially for the scenario with multiple cascaded OWCs. Here, we propose and experimentally demonstrate a pump-linewidth-tolerant OWC scheme suitable for high-order QAM signals using coherent two-tone pumps. Using 3.5-MHz-linewidth distributed feedback (DFB) lasers as pump sources, our scheme enables wavelength conversion of both 16QAM and 64QAM signals with negligible power penalty, in a periodically-poled Lithium Niobate (PPLN) waveguide based OWC. We also demonstrate the performance of pump phase noise cancellation, showing that such coherent two-tone pump schemes can eliminate the need for ultra-narrow linewidth pump lasers and enable practical implementation of low-cost OWC in future dynamic optical networks.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. Willner, “λ-Conversion of 160-Gbit/s PDM 16-QAM Using a Single Periodically-Poled Lithium Niobate Waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWG5.
  3. A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, J. Dupuy, and S. Radic, “All-Optical Tunable Wavelength Shifting of a 128-Gbit/S 64-Qam Signal,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.2.F.2.
    [CrossRef]
  4. W. Peng, H. Takahashi, T. Tsuritani, and I. Morita, “DAC-free Generation and 320-km Transmission of 11.2-GBd PDM-64QAM Using a Single I/Q Modulator,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.C.3.
    [CrossRef]
  5. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100x120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection, ” European Conference in Optical Communications, paper PD2_4 (2010).
  6. G.-W. Lu, T. Sakamoto, T. Kawanishi, “Flexible high-order QAM transmitter using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics and optics,” Opt. Express 21(5), 6213–6223 (2013).
    [CrossRef] [PubMed]
  7. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
    [CrossRef] [PubMed]
  8. G.-W. Lu, T. Sakamoto, T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [CrossRef] [PubMed]
  9. A. P. Anthur, R. T. Watts, K. Shi, J. O. Carroll, D. Venkitesh, L. P. Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express 21(13), 15568–15579 (2013).
    [CrossRef] [PubMed]
  10. S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
    [CrossRef]
  11. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-Optical Signal Processing Using χ2 Nonlinearities in Guided-Wave Devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  12. H. Hu, R. Nouroozi, R. Ludwig, B. Hüttl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Simultaneous Polarization-Insensitive Wavelength Conversion of 80-Gb/S Rz-DQPSK Signal and 40-Gb/s RZ-OOK Signal in a Ti:PPLN Waveguide,” J. Lightwave Technol. 29(8), 1092–1097 (2011).
    [CrossRef]
  13. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [CrossRef]
  14. T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High extinction ratio optical modulator using active intensity trimmers,” in Proc. of European Conference and Exhibition on Optical Communication (ECOC 2005), Glasgow (UK), September 2005, paper Th1.6.6.
    [CrossRef]

2014 (1)

2013 (4)

2011 (1)

2006 (1)

2002 (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Anthur, A. P.

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

A. P. Anthur, R. T. Watts, K. Shi, J. O. Carroll, D. Venkitesh, L. P. Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express 21(13), 15568–15579 (2013).
[CrossRef] [PubMed]

Barry, L. P.

A. P. Anthur, R. T. Watts, K. Shi, J. O. Carroll, D. Venkitesh, L. P. Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express 21(13), 15568–15579 (2013).
[CrossRef] [PubMed]

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

Carroll, J. O.

Duill, S. P. O.

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

Fejer, M. M.

Filion, B.

Hu, H.

Hüttl, B.

Huynh, T. N.

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

Kawanishi, T.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Kumar, S.

Langrock, C.

Larochelle, S.

Lu, G.-W.

Ludwig, R.

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

McGeehan, J. E.

Naimi, S. T.

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

Ng, W. C.

Nguyen, A. T.

Nouroozi, R.

Rusch, L. A.

Sakamoto, T.

Schmidt-Langhorst, C.

Schubert, C.

Shi, K.

Sohler, W.

Suche, H.

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Venkitesh, D.

A. P. Anthur, R. T. Watts, K. Shi, J. O. Carroll, D. Venkitesh, L. P. Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express 21(13), 15568–15579 (2013).
[CrossRef] [PubMed]

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

Watts, R. T.

Willner, A. E.

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. P. O. Duill, S. T. Naimi, A. P. Anthur, T. N. Huynh, D. Venkitesh, L. P. Barry, “Simulations of an OSNR-Limited All-Optical Wavelength Conversion Scheme,” IEEE Photon. Technol. Lett. 25(23), 2311–2314 (2013).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Other (5)

S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. Willner, “λ-Conversion of 160-Gbit/s PDM 16-QAM Using a Single Periodically-Poled Lithium Niobate Waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWG5.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, J. Dupuy, and S. Radic, “All-Optical Tunable Wavelength Shifting of a 128-Gbit/S 64-Qam Signal,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.2.F.2.
[CrossRef]

W. Peng, H. Takahashi, T. Tsuritani, and I. Morita, “DAC-free Generation and 320-km Transmission of 11.2-GBd PDM-64QAM Using a Single I/Q Modulator,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.C.3.
[CrossRef]

A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100x120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection, ” European Conference in Optical Communications, paper PD2_4 (2010).

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High extinction ratio optical modulator using active intensity trimmers,” in Proc. of European Conference and Exhibition on Optical Communication (ECOC 2005), Glasgow (UK), September 2005, paper Th1.6.6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Operation principle of the pump phase-noise cancellation in the pump-linewidth-tolerant wavelength converter.

Fig. 2
Fig. 2

Experimental set-up for CW characterization of the PPLN-based wavelength converter.

Fig. 3
Fig. 3

(a) Variation of the CE (solid lines) and SD (dashed lines) with PT, for Δfpumps of 25 (triangles), 50 (dots), 100 (squares) and 200 (no marker) GHz. Output spectra (black solid lines) for Δfpumps of (b) 25 GHz; (c) 50 GHz; and (d) 200 GHz, with PT = 29 dBm. The blue dashed curve in (b), (c) and (d) is the spectrum of the input signal after the PPLN with the pumps turned OFF. The power of the input signal was −1 dBm and Δfp-s = 250 GHz.

Fig. 4
Fig. 4

(a) Variation of the CE (solid lines) and SD (dashed lines) with the PT for Δfp-s of 125 (triangles), 250 (dots), 375 (squares) and 500 (no marker) GHz. Output spectra for Δfp-s of (b) 125 GHz and (c) 500 GHz. The power of the input signal was −1 dBm and Δfpumps = 50 GHz.

Fig. 5
Fig. 5

Experimental set-up for OWC of 16 and 64QAM signals.

Fig. 6
Fig. 6

Optical spectrum measured after PPLN for 64QAM conversion with DFB pump lasers in both free-running and coherent configurations.

Fig. 7
Fig. 7

Recovered carrier phase in the off-line DSP for (a) the input 16QAM signal (back-to-back configuration); (b) the converted 16QAM signal with two free-running DFB pumps; and (c) the converted 16QAM signal with coherent two-tone DFB pumps.

Fig. 8
Fig. 8

Measured constellations using ECL and DFB pump lasers in coherent two-tone and free-running configurations (16QAM: OSNR = 18dB, 64QAM: OSNR = 34dB).

Fig. 9
Fig. 9

Measured BER vs. OSNR curves for 16/64QAM. Squares: back-to-back (BtB), stars: coherent pumps (ECL), crosses: free-running pumps (ECL), diamonds: coherent pumps (DFB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ output = θ input + Δ θ p1 Δ θ p2 + C = θ input + Δ θ pump + C

Metrics