Abstract

This paper firstly demonstrated the refractive index (RI) characteristics of a singlemode-claddingless-singlemode fiber structure filter based fiber ring cavity laser sensing system. The experiment shows that the lasing wavelength shifts to red side with the ambient RI increase. Linear and parabolic fitting are both done to the measurements. The linear fitting result shows a good linearity for applications in some areas with the determination coefficient of 0.993. And a sensitivity of ~131.64nm/RIU is experimentally achieved with the aqueous solution RI ranging from 1.333 to 1.3707, which is competitively compared to other existing fiber-optic sensors. While the 2 order polynomial fitting function, which determination relationship is higher than 0.999, can be used to some more rigorous monitoring. The proposed fiber laser has a SNR of ~50dB, and 3dB bandwidth ~0.03nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
    [CrossRef]
  2. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  3. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
    [CrossRef] [PubMed]
  4. X. Wu, J. Zhang, J. Chen, C. Zhao, Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Opt. Lett. 34(3), 392–394 (2009).
    [CrossRef] [PubMed]
  5. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
  6. J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
  7. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009).
  8. A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
    [CrossRef]
  9. D. Ðonlagić, M. Završnik, “Fiber-optic microbend sensor structure,” Opt. Lett. 22(11), 837–839 (1997).
    [CrossRef] [PubMed]
  10. E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
    [CrossRef]
  11. Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).
  12. X. Lan, J. Huang, Q. Han, T. Wei, Z. Gao, H. Jiang, J. Dong, H. Xiao, “Fiber ring laser interrogated zeolite-coated singlemode-multimode-singlemode structure for trace chemical detection,” Opt. Lett. 37(11), 1998–2000 (2012).
    [CrossRef] [PubMed]
  13. W. S. Mohammed, A. Mehta, E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
  14. W. S. Mohammed, P. W. E. Smith, X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [CrossRef] [PubMed]
  15. L. Cheng, J. Han, Z. Guo, L. Jin, B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett. 38(5), 688–690 (2013).
    [CrossRef] [PubMed]
  16. Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28, 3403–3408 (2010).

2013

2012

2011

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

2010

2009

2008

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

2006

N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[CrossRef]

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
[CrossRef]

W. S. Mohammed, P. W. E. Smith, X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[CrossRef] [PubMed]

2005

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

2004

2003

A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

1997

1996

Barnes, J.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Bhatia, V.

Bock, W.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Chen, J.

Chen, L.

Chen, N.

N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[CrossRef]

Chen, X.

Cheng, L.

Cui, Y.

N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[CrossRef]

Ding, J.-F.

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

Dong, J.

Ðonlagic, D.

Farrell, G.

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

Fraser, J. M.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Gao, L.

Gao, Z.

Gong, Q.

Greig, P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Gu, X.

Guan, B.-O.

Guo, Z.

Han, J.

Han, Q.

He, S.

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

Huang, J.

Jiang, H.

Jin, L.

Johnson, E. G.

W. S. Mohammed, A. Mehta, E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).

A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

Kumar, A.

Kumar, Y. B. P.

Lan, X.

Li, E.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
[CrossRef]

Liang, R.

Liu, D.

Liu, S.

Loock, H. P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Marin, E.

Mehta, A.

W. S. Mohammed, A. Mehta, E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).

A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

Meunier, J.-P.

Mohammed, W.

A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

Mohammed, W. S.

Oleschuk, R. D.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Semenova, Y.

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

Shao, L.-Y.

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

Shum, P.

Smith, P. W. E.

Sun, Q.

Tian, Z.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Tripathi, S. M.

Varshney, R. K.

Vengsarkar, A. M.

Wang, P.

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

Wang, Q.

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

Wang, X.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
[CrossRef]

Wei, T.

Wo, J.

Wu, F.

Wu, X.

Xiao, H.

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

Yan, J.-H.

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

Yin, Z.

Yun, B.

N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[CrossRef]

Završnik, M.

Zhang, A. P.

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

Zhang, C.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
[CrossRef]

Zhang, J.

Zhang, L.

Zhao, C.

Appl. Phys. Lett.

N. Chen, B. Yun, Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[CrossRef]

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(091119), 1–3 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).

J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).

A. Mehta, W. Mohammed, E. G. Johnson, “Mutimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Q. Wang, Y. Semenova, P. Wang, G. Farrell, “High sensitivity SMS fiber structure based refractermeter-analysis and experiment,” Opt. Express 31, 7937–7944 (2011).

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of conventional SCS based RI sensing system. Inset: schematic of the SCS fiber structure.

Fig. 2
Fig. 2

Experiment setup of the proposed laser sensing system (a); and the function relationship between the length of the claddingless fiber and FSR of the filter (b).

Fig. 3
Fig. 3

Transmission losses of the conventional SCS fiber structure with the claddingless fiber in the air (black line) and pure water (red line).

Fig. 4
Fig. 4

Laser spectrum varies with the RI changes of the aqueous solutions.

Fig. 5
Fig. 5

Measured central wavelength shift vs. glycerol concentration and the linear (red) and parabolic (navy) fittings. R2: coefficient of determination in the fittings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c n = 0 E s ( r ) Φ n ( r ) r d r 0 Φ n ( r ) Φ n ( r ) r d r
E ( r , z ) = n = 0 N c n Φ n ( r ) exp ( j β n z )
λ w p = 16 n e f f a 2 ( m n ) [ 2 ( m + n ) 1 ] L

Metrics