Abstract

A holographic kinetic model is proposed to quantitatively represent the dynamics of mixed volume gratings in a bulk gold nanoparticles (NPs) doped photopolymer. Due to the polymerization-driven multicomponent diffusion, the volume refractive index grating is induced by the periodic spatial distribution of photoproduct while the absorption grating is formed by the periodic spatial distribution of gold NPs. By simulating this model with the characterization of time varying absorption modulation, it is capable to describe the behavior of gold NPs in both the polymerization and the multicomponent diffusion process. The temporal evolution of refractive index modulation and absorption modulation can be extracted, respectively, from a diffraction efficiency curve by fitting the model. The established model could be an effective method for understanding the photophysical and photochemical mechanism of holographic nanocomposite.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (John Wiley, 2010), Chap. 5, pp. 105–107.
  2. H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
    [CrossRef] [PubMed]
  3. S. H. Lin, K. Y. Hsu, W.-Z. Chen, W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
    [CrossRef] [PubMed]
  4. N. Suzuki, Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43(10), 2125–2129 (2004).
    [CrossRef] [PubMed]
  5. C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
    [CrossRef]
  6. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
    [CrossRef] [PubMed]
  7. E. Hata, Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35(3), 396–398 (2010).
    [CrossRef] [PubMed]
  8. Y. Luo, J. M. Russo, R. K. Kostuk, G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
    [CrossRef] [PubMed]
  9. N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
    [CrossRef]
  10. N. Suzuki, Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
    [CrossRef]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [CrossRef]
  12. D. Yu, H. P. Liu, Y. Y. Jiang, X. D. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
    [CrossRef] [PubMed]
  13. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  14. P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  15. R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
    [CrossRef] [PubMed]
  16. C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
    [CrossRef]
  17. J. H. Kwon, H. C. Hwang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
    [CrossRef]
  18. A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
    [CrossRef] [PubMed]
  19. R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
    [CrossRef]
  20. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
    [CrossRef]
  21. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
    [CrossRef]
  22. S. Liu, M. R. Gleeson, J. X. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28(11), 2833–2843 (2011).
    [CrossRef]
  23. C. E. Close, M. R. Gleeson, D. A. Mooney, J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
    [CrossRef]
  24. M. R. Gleeson, S. Liu, J. X. Guo, J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
    [CrossRef]
  25. J. T. Sheridan, J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef] [PubMed]
  26. I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
    [CrossRef]
  27. S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    [CrossRef]
  28. L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
    [CrossRef]

2013 (1)

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

2011 (3)

2010 (4)

2009 (2)

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

2008 (1)

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

2006 (4)

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
[CrossRef]

H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

2004 (1)

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

2001 (1)

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

2000 (3)

1999 (1)

1998 (1)

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Barbastathis, G.

Bastiaansen, C. W. M.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Braun, P. V.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Broer, D. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Bunning, T. J.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

Busbee, J. D.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Cao, L.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
[CrossRef] [PubMed]

Chechik, V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Chen, P. L.

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

Chen, W.-Z.

Chikama, K.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Close, C. E.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Dennis, C. L.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

El-Sayed, M. A.

S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

Escuti, M. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Funston, A. M.

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

Gleeson, M. R.

Goldenberg, L. M.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Gu, C.

Gu, M.

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Guo, J. X.

Hata, E.

He, Q.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
[CrossRef] [PubMed]

Helliwell, P.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Hidaka, M.

Hsiao, Y. N.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

Hsu, K. Y.

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef] [PubMed]

Hwang, H. C.

Jiang, Y. Y.

Jin, G.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006).
[CrossRef] [PubMed]

Juhl, A. T.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

Kojima, T.

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Kostuk, R. K.

Koudela, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Koval, J. J.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Kowarschik, R.

Kwon, J. H.

Lawrence, J. R.

Li, C.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

Li, J.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

Lin, J. H.

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

Lin, S. H.

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef] [PubMed]

Link, S.

S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

Liu, H. P.

Liu, S.

Loos, J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Luo, Y.

Matusevich, V.

Miler, M.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Mooney, D. A.

Mulvaney, P.

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

Murray, R. W.

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

Natarajan, L. V.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

Nussbaumer, R.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Ohmori, K.

Russo, J. M.

Sakhno, O. V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Sánchez, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Sardar, R.

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Sheridan, J. T.

Shiao, Y. N.

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

Smimova, T. N.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Stumpe, J.

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Sun, X. D.

Suzuki, N.

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43(10), 2125–2129 (2004).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Tolstik, E.

Tomita, Y.

Tomlin, D. W.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

Tondiglia, V. P.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

Vaia, R. A.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

van Heesch, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Wei, H.

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef] [PubMed]

Woo, K. C.

Xu, Z.

Yu, D.

Zhang, F.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

Zhang, S.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Adv. Mater. (1)

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

N. Suzuki, Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
[CrossRef]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

Chem. Mater. (1)

L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Int. Rev. Phys. Chem. (1)

S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

J. Mod. Opt. (1)

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Langmuir (1)

R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[CrossRef] [PubMed]

Nature (1)

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Eng. (1)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (John Wiley, 2010), Chap. 5, pp. 105–107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Holographic multicomponent diffusion process in gold NPs doped PQ-PMMA photopolymer; (b) Schematic graph for the formation of holographic mixed gratings.

Fig. 2
Fig. 2

Spatial and temporal evolution of PQ molecules (a), gold NPs (b), MMA molecules (c) and photoproducts (d) in the polymeric nanocomposite under holographic exposure. Bright and dark regions of the interference pattern are indicated in the corresponding area of each subgraph.

Fig. 3
Fig. 3

(a) Comparison of the spatial distribution of PQ molecules at t = 6000s in the photopolymer without and with gold NPs; (b) The temporal evolution of spatial distribution of PQ molecules in the photopolymer with gold NPs.

Fig. 4
Fig. 4

Comparisons of experimental results and simulation fitting results for the temporal diffraction efficiency for photopolymer without gold NPs (hollow circles for the experiment and solid green line for the theory), with 0.05 vol.% gold NPs (hollow triangles for the experiment and solid red line for the theory) and with 0.24 vol.% gold NPs (hollow squares for the experiment and solid blue line for the theory).

Fig. 5
Fig. 5

Temporal evolution of refractive index modulation (a) and absorption modulation (b) for photopolymer without gold NPs (dashed green line), with 0.05 vol.% gold NPs (solid red line) and with 0.24 vol.% gold NPs (dotted blue line).

Tables (1)

Tables Icon

Table 1 Parameters values extracted from fits to experimental growth curves of diffraction efficiency

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M P Q + M M M A + M N P s + M P + M B = 1 ,
j P Q , N P s = D P Q A u [ [ P Q ] ( x , t ) [ A u ] ( x , t ) [ A u ] ( x , t ) [ P Q ] ( x , t ) ] ,
[ P Q ] ( x , t ) t = D P Q A u ( [ A u ] ( x , t ) 2 [ P Q ] ( x , t ) x 2 [ P Q ] ( x , t ) 2 [ A u ] ( x , t ) x 2 ) R t [ P Q ] ( x , t ) ,
[ M ] ( x , t ) t = D M A u ( [ A u ] ( x , t ) 2 [ M ] ( x , t ) x 2 [ M ] ( x , t ) 2 [ A u ] ( x , t ) x 2 ) , k m [ P Q * ] ( x , t ) [ M ] ( x , t )
[ P Q * ] ( x , t ) t = κ i I ( x , t ) [ P Q ] ( x , t ) k m [ P Q * ] ( x , t ) [ M ] ( x , t ) + R ( x , x ' ) k p [ P Q * ] ( x ' , t ) [ P M M A ] ( x ' , t ) d x ' ,
[ A u ] ( x , t ) t = D P Q A u ( [ P Q ] ( x , t ) 2 [ A u ] ( x , t ) x 2 [ A u ] ( x , t ) 2 [ P Q ] ( x , t ) x 2 ) + D M A u ( [ M ] ( x , t ) 2 [ A u ] ( x , t ) x 2 [ A u ] ( x , t ) 2 [ M ] ( x , t ) x 2 ) .
[ P ] ( x , t ) t = k m [ P Q * ] ( x , t ) [ M ] ( x , t ) + + R ( x , x ' ) k p [ P Q * ] ( x ' , t ) [ P M M A ] ( x ' , t ) d x ' .
η = exp ( 2 α 0 d cos θ B ) { sin 2 [ π d n 1 ( t ) λ cos θ B ] +sh 2 ( α 1 ( t ) d 2 cos θ B ) } ,
n 2 1 n 2 + 2 = φ P M M A n P M M A 2 1 n P M M A 2 + 2 + φ M n M 2 1 n M 2 + 2 + φ P n P 2 1 n P 2 + 2 + φ B n B 2 1 n B 2 + 2 ,
n 1 ( t ) = ( n D a r k 2 + 2 ) 2 6 n D a r k [ φ P M M A 1 ( t ) ( n P M M A 2 1 n P M M A 2 + 2 n B 2 1 n B 2 + 2 ) + φ M 1 ( t ) ( n M 2 1 n M 2 + 2 n B 2 1 n B 2 + 2 ) , + φ P 1 ( t ) ( n P 2 1 n P 2 + 2 n B 2 1 n B 2 + 2 ) ]
ε e f f = ( 2 A + 1 ) ( 1 A ) ε e , A = f m ε m ε e ε m + 2 ε e ,

Metrics