Abstract

Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett . 38(22), 4719 (2013)]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Rivenson, B. Katz, R. Kelner, J. Rosen, “Single channel in-line multimodal digital holography,” Opt. Lett. 38(22), 4719–4722 (2013).
    [CrossRef] [PubMed]
  2. B. Katz, J. Rosen, R. Kelner, G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012).
    [CrossRef] [PubMed]
  3. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  4. E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962).
    [CrossRef]
  5. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  6. V. Micó, J. García, Z. Zalevsky, B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34(10), 1492–1494 (2009).
    [CrossRef] [PubMed]
  7. V. Linnik, “Simple interferometer for the investigation of optical systems,” Proc. Acad. Sci. USSR 1, 208–210 (1933).
  8. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).
  9. H. Kadono, N. Takai, T. Asakura, “New common-path phase shifting interferometer using a polarization technique,” Appl. Opt. 26(5), 898–904 (1987).
    [CrossRef] [PubMed]
  10. C. Ramírez, E. Otón, C. Iemmi, I. Moreno, N. Bennis, J. M. Otón, J. Campos, “Point diffraction interferometer with a liquid crystal monopixel,” Opt. Express 21(7), 8116–8125 (2013).
    [CrossRef] [PubMed]
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
    [CrossRef] [PubMed]
  12. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [CrossRef] [PubMed]
  13. V. Arrizón, D. Sánchez-de-la-Llave, “Common-path interferometry with one-dimensional periodic filters,” Opt. Lett. 29(2), 141–143 (2004).
    [CrossRef] [PubMed]
  14. V. Mico, Z. Zalevsky, J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
    [CrossRef] [PubMed]
  15. P. Gao, G. Pedrini, W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38(8), 1328–1330 (2013).
    [CrossRef] [PubMed]
  16. R. Kelner, J. Rosen, G. Brooker, “Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–20144 (2013).
    [CrossRef] [PubMed]
  17. R. Kelner, J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
    [CrossRef] [PubMed]
  18. O. Bryngdahl, A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9(1), 231–232 (1970).
    [CrossRef] [PubMed]
  19. D. N. Naik, G. Pedrini, W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21(4), 3990–3995 (2013).
    [CrossRef] [PubMed]
  20. B. Katz, J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express 18(2), 962–972 (2010).
    [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chap. 8, p. 273 and Chap. 5, p. 97.
  22. M. Born and E. Wolf, Principles of Optics (Cambridge, 1999), Chap. 8.6.3, p. 471.

2013 (5)

2012 (2)

2010 (2)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

B. Katz, J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express 18(2), 962–972 (2010).
[CrossRef] [PubMed]

2009 (1)

2006 (2)

2004 (1)

1997 (1)

1987 (1)

1975 (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).

1970 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

1933 (1)

V. Linnik, “Simple interferometer for the investigation of optical systems,” Proc. Acad. Sci. USSR 1, 208–210 (1933).

Arrizón, V.

Asakura, T.

Bennis, N.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Brooker, G.

Bryngdahl, O.

Campos, J.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gao, P.

García, J.

Garcia-Sucerquia, J.

Iemmi, C.

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Kadono, H.

Katz, B.

Kelner, R.

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Klages, P.

Kreuzer, H. J.

Leith, E. N.

Linnik, V.

V. Linnik, “Simple interferometer for the investigation of optical systems,” Proc. Acad. Sci. USSR 1, 208–210 (1933).

Lohmann, A.

Mico, V.

Micó, V.

Moreno, I.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Naik, D. N.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Osten, W.

Otón, E.

Otón, J. M.

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Pedrini, G.

Ramírez, C.

Rivenson, Y.

Rosen, J.

Sánchez-de-la-Llave, D.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Smartt, R. N.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).

Steel, W. H.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).

Takai, N.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Upatnieks, J.

Xu, W.

Yamaguchi, I.

Zalevsky, Z.

Zhang, T.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).

Lab Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Proc. Acad. Sci. USSR (1)

V. Linnik, “Simple interferometer for the investigation of optical systems,” Proc. Acad. Sci. USSR 1, 208–210 (1933).

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chap. 8, p. 273 and Chap. 5, p. 97.

M. Born and E. Wolf, Principles of Optics (Cambridge, 1999), Chap. 8.6.3, p. 471.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of the proposed JORDI design: Lo, objective lens; P1 and P2, polarizers; SLM1 and SLM2, spatial light modulators; CCD, charge-coupled device. In (a) the complete system is presented, whereas in (b) and (c) the imaging systems creating the object and reference waves are presented separately and respectively. The symbols oe-22-5-4995-i001, oe-22-5-4995-i002, and oe-22-5-4995-i003 are polarization orientations perpendicular, parallel and at a 45° angle to the plane of the page, respectively.

Fig. 2
Fig. 2

Experimental setup of JORDI: Lo, objective lens; P1 and P2, polarizers; BS1 and BS2, beam splitters; SLM1 and SLM2, spatial light modulators; CCD, charge-coupled device. The symbols oe-22-5-4995-i004, oe-22-5-4995-i005, and oe-22-5-4995-i006 are polarization orientations perpendicular, parallel and at a 45° angle to the plane of the page, respectively. The setup in (a) is suitable for recording transmissive objects, whereas the alternative illumination configuration demonstrated in (b) enables recording reflective objects.

Fig. 3
Fig. 3

JORDI recording of a transmissive target: (a) amplitude and (b) phase of the recorded hologram; (c) hologram reconstruction at the plane of best focus; (d)-(g) cross sections of elements 1 to 4 of group 5 (highlighted) of the resolution targets, respectively.

Fig. 4
Fig. 4

JORDI results for a reflective target: (a) amplitude and (b) phase of the recorded hologram; (c) hologram reconstruction at the plane of best focus; (d) enlarged portion of (c) shows details of resolution groups 4 and 5.

Fig. 5
Fig. 5

JORDI recording of a three-dimensional scene: (a) amplitude and (b) phase (shown after eliminating the quadratic phase term of the reference) of the recorded Fresnel hologram; (c) hologram reconstruction at the plane of best focus of the 4.0 cycles/mm inscription; (d) hologram reconstruction at the plane of best focus of the 'X1' inscription.

Fig. 6
Fig. 6

JORDI results for a highly scattering object: (a) modification of the experimental setup (Fig. 2), where a relay system of −1/4x magnification, realized by the lenses La and Lb, extends the field of view of the system; (b) amplitude and (c) phase of the recorded hologram, where out-of-focus details of the Israeli 5 Agorot coin are barely visible; (d) hologram reconstruction at the plane of best focus, exposing details of the 5 Agorot coin.

Fig. 7
Fig. 7

JORDI based holographic microscopy: (a) amplitude and (b) phase of the recorded hologram; (c) hologram reconstruction at the plane of best focus, showing complete details of resolution groups 6 and 7, up to 228 lp/mm.

Fig. 8
Fig. 8

JORDI recording of a phase target: (a) amplitude and (b) wrapped phase of the recorded hologram; (c) unwrapped phase profile of (b); (d) theoretical and measured (after phase unwrap and bias elimination) phase profiles at X-Position = 1mm; (e) theoretical and average measured phase profiles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

u o u t 1 ( x , y ) = c 1 u i n ( x , y ) Q ( 1 f o ) Q ( 1 f o ) Q ( 1 f o + f 2 ) Q ( 1 f 2 ) Q ( 1 f 2 )
u o u t 2 , k ( x , y ) = c 2 e i θ k u i n ( x , y ) Q ( 1 f o ) Q ( 1 f o ) Q ( 1 d ) Q ( 1 f 1 ) L ( A f 1 ) Q ( 1 f 1 )
u o u t 1 ( x , y ) = b 1 L [ f 2 f o r s ( f 2 f o ) 2 z s ] Q [ 1 ( f 2 f o ) 2 z s ] ,
u o u t 1 ( x , y ) = a 1 u i n ( x m t 1 , y m t 1 ) ,
u o u t 2 , k ( x , y ) = b 2 e i θ k L ( A f 1 2 f 1 2 f 2 ) Q [ 1 f 1 2 2 ( f 1 f 2 ) ] L [ f 1 f o r r A ( f 1 f o ) 2 z r ] Q [ 1 ( f 1 f o ) 2 z r ] ,
u o u t 2 , k ( x , y ) = a 2 e i θ k L ( A f 1 2 f 1 2 f 2 ) Q [ 1 f 1 2 2 ( f 1 f 2 ) ] u i n ( x A x m t 2 , y A y m t 2 ) ,
I k ( x , y ) = | u o u t 1 ( x , y ) + u o u t 2 , k ( x , y ) | 2 = | a 1 u i n ( x m t 1 , y m t 1 ) + a 2 e i θ k Q ( 1 f 1 ) | 2 , ( x , y ) Ω o u t , o b j .
H ( x , y ) u i n ( x m t 1 , y m t 1 ) Q ( 1 f 1 ) , ( x , y ) Ω o u t , o b j ,
Δ m i n = 0.82 λ N A = 1.64 f o λ D .
u i n , o b j ( x , y ) = u i n ( x , y ) r e c t ( x x c , o b j w x , o b j , y y c , o b j w y , o b j ) ,
u i n , r e f ( x , y ) = u i n ( x , y ) r e c t ( x x c , r e f w x , r e f , y y c , r e f w y , r e f ) ,
r e c t ( x , y ) = { 1 for | x | 1 and | y | 1 0 elsewhere .
u o u t , o b j ( x , y ) = a 1 u i n ( x m t 1 , y m t 1 ) r e c t ( x m t 1 x c , o b j m t 1 w x , o b j , y m t 1 y c , o b j m t 1 w y , o b j ) .
u o u t , k , r e f ( x , y ) = a 2 e i θ k Q ( 1 f 1 ) u i n ( x A x m t 2 , y A y m t 2 ) r e c t [ x ( m t 2 x c , r e f + A x ) m t 2 w x , r e f , y ( m t 2 y c , r e f + A y ) m t 2 w y , r e f ] .
u o u t , k , r e f ( x , y ) = a 2 e i θ k Q ( 1 f 1 ) r e c t [ x ( m t 2 x c , r e f + A x ) m t 2 w x , r e f , y ( m t 2 y c , r e f + A y ) m t 2 w y , r e f ] .
| m t 2 m t 1 | max { w x , o b j w x , r e f , w y , o b j w y , r e f }
A = ( A x , A y ) = ( m t 1 x c , o b j m t 2 x c , r e f , m t 1 y c , o b j m t 2 y c , r e f ) .

Metrics