Abstract

Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb2Te3 chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
    [CrossRef]
  2. A. Kolobov and J. Tominaga, Chalcogenides: Metastability and Phase Change Phenomena (Springer, 2012).
  3. W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
    [CrossRef] [PubMed]
  4. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
    [CrossRef] [PubMed]
  5. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
    [CrossRef]
  6. J. Hegedüs, S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
    [CrossRef] [PubMed]
  7. W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
    [CrossRef]
  8. B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
    [CrossRef]
  9. C. B. Thomas, “The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass,” J. Phys. D 9(18), 2587–2596 (1976).
    [CrossRef]
  10. S. Senkader, C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
    [CrossRef]
  11. U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
    [CrossRef]
  12. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
    [CrossRef]
  13. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
    [CrossRef] [PubMed]
  14. C. M. Chang, C. H. Chu, M. L. Tseng, H.-P. Chiang, M. Mansuripur, D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
    [CrossRef] [PubMed]
  15. A. Dun, J. Wei, F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
    [CrossRef]
  16. C. Deng, Y. Geng, Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
    [CrossRef]
  17. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
    [CrossRef]
  18. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
    [CrossRef]
  19. J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
    [CrossRef]
  20. L. Li, Y. Wu, Y. Wang, “Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives,” Chin. Opt. Lett. 10(10), 101602 (2012).
    [CrossRef]
  21. J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
    [CrossRef] [PubMed]
  22. J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
    [CrossRef]
  23. D. Wright, “Thermoelectric properties of bismuth telluride and its alloys,” Nature 181(4612), 834 (1958).
    [CrossRef]
  24. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
    [CrossRef] [PubMed]
  25. H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
    [CrossRef]
  26. J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
    [CrossRef]
  27. C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
    [CrossRef]
  28. Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
    [CrossRef]
  29. J. D. Rogers, A. Kärkkäinen, T. Tkaczyk, J. T. Rantala, M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
    [CrossRef] [PubMed]
  30. Q. Tang, “Dot distribution type of grayscale mask and colorscale photomask for fabrication diffractive and refractive microlens arrays,” Proc. SPIE 8921, 89211J (2013).
    [CrossRef]
  31. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
    [CrossRef] [PubMed]
  32. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
    [CrossRef]
  33. M. Mansuripur, G. A. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21(6), 1106–1114 (1982).
    [CrossRef] [PubMed]
  34. http://www.springermaterials.com/docs/info/10681727_1046.html .
  35. S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
    [CrossRef]
  36. S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
    [CrossRef]
  37. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]
  38. S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, Y. Cheng, “Microstructuring of anti-reflection film for HgCdTe/Si IRFPA with femtosecond laser pulse,” Chin. Opt. Lett. 11(3), 033101 (2013).
    [CrossRef]
  39. B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
    [CrossRef]

2013 (4)

Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
[CrossRef]

Q. Tang, “Dot distribution type of grayscale mask and colorscale photomask for fabrication diffractive and refractive microlens arrays,” Proc. SPIE 8921, 89211J (2013).
[CrossRef]

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, Y. Cheng, “Microstructuring of anti-reflection film for HgCdTe/Si IRFPA with femtosecond laser pulse,” Chin. Opt. Lett. 11(3), 033101 (2013).
[CrossRef]

2012 (2)

L. Li, Y. Wu, Y. Wang, “Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives,” Chin. Opt. Lett. 10(10), 101602 (2012).
[CrossRef]

S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
[CrossRef]

2011 (5)

2010 (3)

J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
[CrossRef]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
[CrossRef]

2009 (3)

C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
[CrossRef] [PubMed]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[CrossRef]

2008 (2)

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

J. Hegedüs, S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

2007 (1)

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

2006 (2)

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

2005 (1)

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

2004 (4)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

S. Senkader, C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

J. D. Rogers, A. Kärkkäinen, T. Tkaczyk, J. T. Rantala, M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
[CrossRef] [PubMed]

2003 (1)

C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

2001 (1)

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

1999 (1)

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

1997 (1)

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

1988 (1)

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

1982 (1)

1976 (1)

C. B. Thomas, “The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass,” J. Phys. D 9(18), 2587–2596 (1976).
[CrossRef]

1968 (1)

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

1958 (1)

D. Wright, “Thermoelectric properties of bismuth telluride and its alloys,” Nature 181(4612), 834 (1958).
[CrossRef]

Abelson, J. R.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Anzai, Y.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Bishop, S. G.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Blügel, S.

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Botti, S.

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

Cao, S.

Chang, C. M.

Chen, B. H.

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Chen, X.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Cheng, H. W.

Cheng, L.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

Cheng, Y.

Cheong, B. K.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Chiang, H.-P.

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Chu, C. H.

Chu, N.-N.

Colpitts, T.

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Connell, G. A.

Dai, X.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Deng, C.

C. Deng, Y. Geng, Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[CrossRef]

Descour, M. R.

Detemple, R.

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Dun, A.

A. Dun, J. Wei, F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

Elliott, S. R.

J. Hegedüs, S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

Fan, Y.

Fang, Y.

Fang, Z.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Fujimori, S.

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

Funakoshi, N.

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

Gan, F.

S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
[CrossRef]

A. Dun, J. Wei, F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[CrossRef]

Geng, Y.

C. Deng, Y. Geng, Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

Ghodssi, R.

C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Goodman, J. W.

Gu, M.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Guo, C. F.

He, F.

Hegedüs, J.

J. Hegedüs, S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

Hong, M. H.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Hu, X.

Huang, Y. M.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Ielmini, D.

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

Jhi, S.

J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
[CrossRef]

Jia, B.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Jiang, P.

Jiao, X.

J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[CrossRef]

Kang, D. H.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Kärkkäinen, A.

Kim, J.

J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
[CrossRef]

J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
[CrossRef]

Kim, K. B.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Kim, M.

Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
[CrossRef]

Kim, T.

Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Lacaita, A. L.

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

Lee, B. S.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

Li, L.

Li, X.

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

Liao, Y.

Lim, C. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Lin, W. C.

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Liu, A. Q.

Liu, C.

S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, Y. Cheng, “Microstructuring of anti-reflection film for HgCdTe/Si IRFPA with femtosecond laser pulse,” Chin. Opt. Lett. 11(3), 033101 (2013).
[CrossRef]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Liu, J.

J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
[CrossRef]

J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[CrossRef]

Liu, Q.

Liu, S.

S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
[CrossRef]

Mansuripur, M.

Miao, X. S.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Minemura, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Miyamoto, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Modafe, A.

C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Nam, Y.

Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
[CrossRef]

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

O’Quinn, B.

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ovshinsky, S. R.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Pamungkas, A.

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Peng, C.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

Qi, X.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Qiao, Q.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Rantala, J. T.

Redaelli, A.

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

Reining, L.

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

Rogers, J. D.

Russo, U.

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

Saha, J. K.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Senkader, S.

S. Senkader, C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[CrossRef]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Shi, Z.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Shintani, T.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Shiue, C. D.

Siivola, E.

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Steimer, C.

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Tan, P. K.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Tang, Q.

Q. Tang, “Dot distribution type of grayscale mask and colorscale photomask for fabrication diffractive and refractive microlens arrays,” Proc. SPIE 8921, 89211J (2013).
[CrossRef]

Thomas, C. B.

C. B. Thomas, “The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass,” J. Phys. D 9(18), 2587–2596 (1976).
[CrossRef]

Tkaczyk, T.

Tominaga, J.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Tsai, D. P.

Tseng, M. L.

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Ushiyama, J.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Venkatasubramanian, R.

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Waits, C. M.

C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Wang, Y.

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

L. Li, Y. Wu, Y. Wang, “Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives,” Chin. Opt. Lett. 10(10), 101602 (2012).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
[CrossRef] [PubMed]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Wei, J.

S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

A. Dun, J. Wei, F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[CrossRef]

J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
[CrossRef]

J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[CrossRef]

Welnic, W.

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Wright, C. D.

S. Senkader, C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[CrossRef]

Wright, D.

D. Wright, “Thermoelectric properties of bismuth telluride and its alloys,” Nature 181(4612), 834 (1958).
[CrossRef]

Wu, Y.

L. Li, Y. Wu, Y. Wang, “Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives,” Chin. Opt. Lett. 10(10), 101602 (2012).
[CrossRef]

C. Deng, Y. Geng, Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[CrossRef]

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

Wuttig, M.

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

Xu, W.

Yagi, S.

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

Yamada, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Yamazaki, H.

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

Zhang, H.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Zhang, J.

Zhang, S.

S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, Y. Cheng, “Microstructuring of anti-reflection film for HgCdTe/Si IRFPA with femtosecond laser pulse,” Chin. Opt. Lett. 11(3), 033101 (2013).
[CrossRef]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Zhao, R.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Zhao, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

J. Liu, S. Liu, J. Wei, “Origin of the giant optical nonlinearity of Sb2Te3 phase change materials,” Appl. Phys. Lett. 97(26), 261903 (2010).
[CrossRef]

S. Liu, J. Wei, F. Gan, “Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond,” Appl. Phys. Lett. 100(11), 111903 (2012).
[CrossRef]

J. Wei, J. Liu, X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Deng, Y. Geng, Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[CrossRef]

Chin. Opt. Lett. (3)

IEEE Trans. Electron. Dev. (1)

U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Modeling of programming and read performance in phase-change memories: Part II: Program disturb and mixed scaling approach,” IEEE Trans. Electron. Dev. 55(2), 515–522 (2008).
[CrossRef]

J. Appl. Phys. (5)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[CrossRef]

S. Senkader, C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[CrossRef]

S. Fujimori, S. Yagi, H. Yamazaki, N. Funakoshi, “Crystallization process of Sb-Te alloy films for optical storage,” J. Appl. Phys. 64(3), 1000–1004 (1988).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

J. Micromech. Microeng. (2)

C. M. Waits, A. Modafe, R. Ghodssi, “Investigation of gray-scale technology for large area 3D siliconMEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Y. Nam, M. Kim, T. Kim, “Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography,” J. Micromech. Microeng. 23(10), 105015 (2013).
[CrossRef]

J. Phys. D (1)

C. B. Thomas, “The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass,” J. Phys. D 9(18), 2587–2596 (1976).
[CrossRef]

Jpn. J. Appl. Phys. (1)

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(3B), 1645–1648 (1999).
[CrossRef]

Nanoscale (1)

J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011).
[CrossRef] [PubMed]

Nat. Mater. (3)

J. Hegedüs, S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006).
[CrossRef]

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[CrossRef] [PubMed]

Nat. Phys. (1)

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[CrossRef]

Nature (2)

D. Wright, “Thermoelectric properties of bismuth telluride and its alloys,” Nature 181(4612), 834 (1958).
[CrossRef]

R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Opt. Express (5)

Photonics Res. (1)

B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu, “Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules,” Photonics Res. 1(1), 22–27 (2013).
[CrossRef]

Phys. Rev. B (1)

J. Kim, J. Kim, S. Jhi, “Prediction of topological insulating behavior in crystalline Ge-Sb-Te,” Phys. Rev. B 82(20), 201312 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

W. Wełnic, S. Botti, L. Reining, M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[CrossRef] [PubMed]

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Proc. SPIE (1)

Q. Tang, “Dot distribution type of grayscale mask and colorscale photomask for fabrication diffractive and refractive microlens arrays,” Proc. SPIE 8921, 89211J (2013).
[CrossRef]

Other (2)

http://www.springermaterials.com/docs/info/10681727_1046.html .

A. Kolobov and J. Tominaga, Chalcogenides: Metastability and Phase Change Phenomena (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics