Abstract

Polarization reciprocity is studied both theoretically and experimentally in an optically compensated configuration of interferometric fiber optic gyroscope (IFOG). In conventional IFOGs based on the minimal scheme, the output port of the coil coupler cannot be used mainly because of its polarization nonreciprocity (PN), and thus it is usually called the “nonreciprocal port”. We show that the PN errors at the nonreciprocal port are effectively eliminated by optical compensation. With this unique property, the optically compensated IFOG can possess two low-PN ports for rotation sensing at the same time. From another perspective, one port IFOGs are possible to be constructed with less structural complexity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
    [CrossRef]
  2. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).
  3. I. A. Andronova, G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys. Usp. 45, 793–817 (2002).
    [CrossRef]
  4. S. L. A. Carrara, B. Y. Kim, H. J. Shaw, “Bias drift reduction in polarization-maintaining fiber gyroscope,” Opt. Lett. 12, 214–216 (1987).
    [CrossRef] [PubMed]
  5. R. Ulrich, M. Johnson, “Fiber-ring interferometer - polarization analysis,” Opt. Lett. 4, 152–154 (1979).
    [CrossRef] [PubMed]
  6. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173–175 (1980).
    [CrossRef] [PubMed]
  7. D. Kim, J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004).
    [CrossRef] [PubMed]
  8. Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
    [CrossRef] [PubMed]
  9. K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
    [CrossRef]
  10. R. J. Fredricks, R. Ulrich, “Phase error-bounds of fiber gyro with imperfect polarizer depolarizer,” Electron. Lett. 20, 330–332 (1984).
    [CrossRef]
  11. E. Jones, J. W. Parker, “Bias reduction by polarisation dispersion in the fibre-optic gyroscope,” Electron. Lett. 22, 54–56 (1986).
    [CrossRef]
  12. B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. 12, 1679–1684 (1994).
    [CrossRef]
  13. B. Szafraniec, G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17, 579–590 (1999).
    [CrossRef]
  14. Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
    [CrossRef]
  15. Y. Yang, Z. Wang, Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37, 2841–2843 (2012).
    [CrossRef] [PubMed]
  16. Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
    [CrossRef]
  17. Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).
  18. W. K. Burns, A. D. Kersey, “Fiber-optic gyroscopes with depolarized light,” J. Lightwave Technol. 10, 992–999 (1992).
    [CrossRef]
  19. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef] [PubMed]
  20. “IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros,” IEEE Std 952-1997 (2008R).
  21. Y. Yang, Z. Wang, Z. Li, “Unbiasedness of simultaneous independent measurement,” Meas. Sci. Technol. 23,085005 (2012).
    [CrossRef]
  22. R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
    [CrossRef]
  23. G. A. Pavlath, H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt. 21, 1752–1757 (1982).
    [CrossRef] [PubMed]

2013 (1)

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

2012 (3)

2011 (1)

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

2004 (1)

2002 (1)

I. A. Andronova, G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys. Usp. 45, 793–817 (2002).
[CrossRef]

1999 (1)

1994 (2)

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. 12, 1679–1684 (1994).
[CrossRef]

R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[CrossRef]

1992 (1)

W. K. Burns, A. D. Kersey, “Fiber-optic gyroscopes with depolarized light,” J. Lightwave Technol. 10, 992–999 (1992).
[CrossRef]

1987 (1)

1986 (1)

E. Jones, J. W. Parker, “Bias reduction by polarisation dispersion in the fibre-optic gyroscope,” Electron. Lett. 22, 54–56 (1986).
[CrossRef]

1984 (1)

R. J. Fredricks, R. Ulrich, “Phase error-bounds of fiber gyro with imperfect polarizer depolarizer,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

1982 (1)

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

1980 (2)

1979 (1)

1967 (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Andronova, I. A.

I. A. Andronova, G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys. Usp. 45, 793–817 (2002).
[CrossRef]

Blake, J.

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. 12, 1679–1684 (1994).
[CrossRef]

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Burns, W. K.

W. K. Burns, A. D. Kersey, “Fiber-optic gyroscopes with depolarized light,” J. Lightwave Technol. 10, 992–999 (1992).
[CrossRef]

Carrara, S. L. A.

Eickhoff, W.

Fredricks, R. J.

R. J. Fredricks, R. Ulrich, “Phase error-bounds of fiber gyro with imperfect polarizer depolarizer,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

Jia, L.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Johnson, M.

Jones, E.

E. Jones, J. W. Parker, “Bias reduction by polarisation dispersion in the fibre-optic gyroscope,” Electron. Lett. 22, 54–56 (1986).
[CrossRef]

Kang, J.

Kersey, A. D.

W. K. Burns, A. D. Kersey, “Fiber-optic gyroscopes with depolarized light,” J. Lightwave Technol. 10, 992–999 (1992).
[CrossRef]

Kim, B. Y.

Kim, D.

Lasko, T. A.

R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[CrossRef]

Lefèvre, H. C.

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

Li, Y.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Li, Z.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Y. Yang, Z. Wang, Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37, 2841–2843 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, Z. Li, “Unbiasedness of simultaneous independent measurement,” Meas. Sci. Technol. 23,085005 (2012).
[CrossRef]

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Lu, P.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Malykin, G. B.

I. A. Andronova, G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys. Usp. 45, 793–817 (2002).
[CrossRef]

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Mathis, R. F.

R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[CrossRef]

May, B. A.

R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[CrossRef]

Parker, J. W.

E. Jones, J. W. Parker, “Bias reduction by polarisation dispersion in the fibre-optic gyroscope,” Electron. Lett. 22, 54–56 (1986).
[CrossRef]

Pavlath, G. A.

Peng, C.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Post, E. J.

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Rashleigh, S. C.

Sanders, G. A.

Shao, S.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Shaw, H. J.

Szafraniec, B.

B. Szafraniec, G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17, 579–590 (1999).
[CrossRef]

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. 12, 1679–1684 (1994).
[CrossRef]

Ulrich, R.

R. J. Fredricks, R. Ulrich, “Phase error-bounds of fiber gyro with imperfect polarizer depolarizer,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173–175 (1980).
[CrossRef] [PubMed]

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
[CrossRef] [PubMed]

R. Ulrich, M. Johnson, “Fiber-ring interferometer - polarization analysis,” Opt. Lett. 4, 152–154 (1979).
[CrossRef] [PubMed]

Wang, C.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Wang, Z.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Y. Yang, Z. Wang, Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37, 2841–2843 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, Z. Li, “Unbiasedness of simultaneous independent measurement,” Meas. Sci. Technol. 23,085005 (2012).
[CrossRef]

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Xu, L.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Yang, Y.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Y. Yang, Z. Wang, Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37, 2841–2843 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, Z. Li, “Unbiasedness of simultaneous independent measurement,” Meas. Sci. Technol. 23,085005 (2012).
[CrossRef]

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Yu, X.

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

Zhang, Z.

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Zhao, D.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Appl. Mech. Mater. (1)

Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, Z. Li, “Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes,” Appl. Mech. Mater. 303–306, 82–85 (2013).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

R. J. Fredricks, R. Ulrich, “Phase error-bounds of fiber gyro with imperfect polarizer depolarizer,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

E. Jones, J. W. Parker, “Bias reduction by polarisation dispersion in the fibre-optic gyroscope,” Electron. Lett. 22, 54–56 (1986).
[CrossRef]

J. Lightwave Technol. (3)

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. 12, 1679–1684 (1994).
[CrossRef]

B. Szafraniec, G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17, 579–590 (1999).
[CrossRef]

W. K. Burns, A. D. Kersey, “Fiber-optic gyroscopes with depolarized light,” J. Lightwave Technol. 10, 992–999 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Yang, Z. Wang, Z. Li, “Unbiasedness of simultaneous independent measurement,” Meas. Sci. Technol. 23,085005 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Usp. (1)

I. A. Andronova, G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys. Usp. 45, 793–817 (2002).
[CrossRef]

Proc. SPIE (2)

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, Z. Li, “Highly sensitive rotation sensing based on orthogonal fiber-optic structures,” Proc. SPIE 8191,81910A (2011).
[CrossRef]

R. F. Mathis, B. A. May, T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[CrossRef]

Rev. Mod. Phys. (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Other (3)

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

“IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros,” IEEE Std 952-1997 (2008R).

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, “All-depolarized Interferometric Fiber-optic Gyroscope Based on Optical Compensation,” IEEE Photonics J. (accepted pending minor revisions).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical constructions for discussion. S, PD, DC, P, DP, and PZT stand for light sources, photodetectors, directional couplers, polarizers, depolarizers, and piezoelectric transducers respectively. (a) The minimal scheme for conventional IFOGs. (b) The conventional depolarized IFOG. (c) The all-depolarized IFOG based on optical compensation. (d) The minimal scheme for optically compensated IFOGs.

Fig. 2
Fig. 2

Polarization flow in IFOGs. Light enters the Sagac coil after a polarization filter (PF). The PF can be a polarizer or a depolarizer depending on the type of IFOGs. When light travels back out from the coil, there are two ports for detecting the interference signal. The reciprocal port (RP) is detected by PD 1, where light goes through the PF again. The nonreciprocal port (NRP) is detected by PD 2, where light does not go back through the PF.

Fig. 3
Fig. 3

PN errors in the optically compensated IFOG and the conventional IFOG.

Fig. 4
Fig. 4

Simulation of the optically compensated all-depolarized IFOG against unstable polarization coupling. PN errors on two polarizations (x and y) are large but with opposite polarities. After summing up two results (sum), PN errors are notably reduced. As d is close to 0, the compensated result is much more stable than uncompensated results.

Fig. 5
Fig. 5

Simulation and experimental results for comparison between the conventional depolarized IFOG and the all-depolarized IFOG. (a)(b) are simulation results. (c)(d) are experimental results. (e)(f) are experimental results analyzed by Allan variance. Blue lines are results for the reciprocal port. Red lines are results for the nonreciprocal port.

Fig. 6
Fig. 6

Signal processing system for IFOGs. Fast Fourier transform (FFT) is used for getting harmonic amplitudes. Ω1 and Ω2 are output rotation rates for the reciprocal port and the nonreciprocal port respectively.

Fig. 7
Fig. 7

Inclination survey using the all-depolarized IFOG.

Tables (3)

Tables Icon

Table 1 Allan variance indices of the IFOGs

Tables Icon

Table 2 Derivation results for conventional IFOGs

Tables Icon

Table 3 Derivation results for optically compensated IFOGs

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ r = arctan ( 1 d ) A r 23 sin ϕ r 23 + 1 d 2 ( A r 12 sin ϕ r 12 A r 13 sin ϕ r 13 ) ( 1 + d ) | C r 1 | 2 + ( 1 d ) A r 23 cos ϕ r 23 + 1 d 2 ( A r 12 cos ϕ r 12 + A r 13 cos ϕ r 13 ) .
Δ ϕ n r = arctan 2 d A n r 23 sin ϕ n r 23 2 1 d 2 ( A n r 12 sin ϕ n r 12 A n r 13 sin ϕ n r 13 ) ( 1 + d ) | C n r 1 | 2 ( 1 d ) | C n r 4 | 2 2 A n r 23 cos ϕ n r 23 ,
Δ ϕ r = arctan 2 d A r 23 sin ϕ r 23 | C r 1 | 2 ( 1 + d ) + | C r 4 | 2 ( 1 d ) + 2 A r 23 cos ϕ r 23 ,
Δ ϕ n r = arctan 2 d A n r 23 sin ϕ n r 23 | C n r 1 | 2 ( 1 + d ) + | C n r 4 | 2 ( 1 d ) + 2 A n r 23 cos ϕ n r 23 .
P x = [ 1 0 0 ε ] , E C = [ ( 1 + d ) / 2 ( 1 d ) / 2 ] e j ω 0 t .
M r + = [ C r 1 C r 2 C r 3 C r 4 ] , M r = [ C r 1 C r 3 C r 2 C r 4 ] .
M n r + = [ C n r 1 C n r 2 C n r 3 C n r 4 ] , M n r = [ C n r 1 C n r 3 C n r 2 C n r 4 ] .
E r + = P x M r + E C e j ϕ r , E r = P x M r E C ,
I r = < | E r + + E r | 2 > = I r 0 + p r 2 + q r 2 cos ( ϕ Δ ϕ r ) ,
E n r + = M n r + E C e j ϕ n r , E n r = M n r E C ,
I n r = < | E n r + + E n r | 2 > = I n r 0 + p n r 2 + q n r 2 cos ( ϕ Δ ϕ n r ) ,
| C r 1 C r 2 | = | C r 3 C r 4 | | C r 1 C r 3 | = | C r 2 C r 4 | , ϕ r 12 = π + ϕ r 34 ϕ r 13 = π + ϕ r 24 .
E C = [ ( 1 + d ) / 2 e j Δ β L ( 1 d ) / 2 ] e j ω 0 t .
E r + = M r + E C e j ϕ r , E r = M r E C
I r x = < | E r x + + E r x | 2 > = I r x 0 + p r x 2 + q r x 2 cos ( ϕ Δ ϕ r x ) ,
I r y = < | E r y + + E r y | 2 > = I r y 0 + p r y 2 + q r y 2 cos ( ϕ Δ ϕ r y ) ,
I r s u m = I r 0 + ( p r x + p r y ) 2 + ( q r x + q r y ) 2 cos ( ϕ Δ ϕ r ) ,
E n r + = M n r + E C e j ϕ n r , E n r = M n r E C ,

Metrics