Abstract

A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  2. H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
    [CrossRef]
  3. C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
    [CrossRef]
  4. S. C. Surender, R. M. Narayanan, “UWB noise-OFDM netted radar: Physical layer design and analysis,” IEEE Trans. Aerosp. Electron. Syst. 47(2), 1380–1400 (2011).
    [CrossRef]
  5. L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006).
    [CrossRef] [PubMed]
  6. S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
    [CrossRef]
  7. M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
    [CrossRef]
  8. F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [CrossRef]
  9. J.-Y. Zheng, M.-J. Zhang, A.-B. Wang, Y.-C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35(11), 1734–1736 (2010).
    [CrossRef] [PubMed]
  10. M.-J. Zhang, T.-G. Liu, A.-B. Wang, J.-Y. Zheng, L.-N. Meng, Z.-X. Zhang, Y.-C. Wang, “Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser,” Opt. Lett. 36(6), 1008–1010 (2011).
    [CrossRef] [PubMed]
  11. L. X. Wang, N. H. Zhu, J. Y. Zheng, J. G. Liu, W. Li, “Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter,” Appl. Opt. 51(15), 2935–2940 (2012).
    [CrossRef] [PubMed]
  12. H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
    [CrossRef]
  13. J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
    [CrossRef]
  14. Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
    [CrossRef]
  15. T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in Proceedings of 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.
    [CrossRef]
  16. J. Yao, “Photonics for ultrawideband communications,” IEEE Microwave Mag. 10(4), 82–95 (2009).
    [CrossRef]
  17. J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
    [CrossRef]
  18. J. B. Fu, S. L. Pan, “Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing,” Opt. Express 21(18), 21218–21223 (2013).
    [CrossRef] [PubMed]
  19. D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
  20. M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
    [CrossRef]
  21. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).
  22. J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
    [CrossRef]
  23. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
    [CrossRef] [PubMed]
  24. T. Shao, J. Yao, “Wavelength reuse in a bidirectional UWB over fiber system,” Opt. Express 21(10), 11921–11927 (2013).
    [CrossRef] [PubMed]
  25. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
    [CrossRef]
  26. M. W. Lee, L. Larger, V. Udaltsov, E. Genin, J.-P. Goedgebuer, “Demonstration of a chaos generator with two time delays,” Opt. Lett. 29(4), 325–327 (2004).
    [CrossRef] [PubMed]
  27. M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
    [CrossRef] [PubMed]

2013 (3)

2012 (3)

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

L. X. Wang, N. H. Zhu, J. Y. Zheng, J. G. Liu, W. Li, “Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter,” Appl. Opt. 51(15), 2935–2940 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (4)

C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[CrossRef]

J.-Y. Zheng, M.-J. Zhang, A.-B. Wang, Y.-C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35(11), 1734–1736 (2010).
[CrossRef] [PubMed]

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
[CrossRef]

2009 (2)

J. Yao, “Photonics for ultrawideband communications,” IEEE Microwave Mag. 10(4), 82–95 (2009).
[CrossRef]

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

2008 (3)

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
[CrossRef]

M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
[CrossRef]

2006 (1)

L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006).
[CrossRef] [PubMed]

2004 (3)

F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

M. W. Lee, L. Larger, V. Udaltsov, E. Genin, J.-P. Goedgebuer, “Demonstration of a chaos generator with two time delays,” Opt. Lett. 29(4), 325–327 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
[CrossRef]

2002 (1)

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

1998 (1)

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Bull, J. D.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Chembo, Y. K.

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

Chen, N.-W.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Chiueh, T.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Dmitriev, A. S.

S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
[CrossRef]

Du, Y.

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Erneux, T.

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

Esman, R. D.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Fairburn, M.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Fu, J. B.

Gauthier, D. J.

L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006).
[CrossRef] [PubMed]

Genin, E.

Ghanipour, P.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Goedgebuer, J.-P.

Grodensky, D.

D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Hämäläinen, M.

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

Han, S. M.

S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
[CrossRef]

Hirt, W.

D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Hovinen, V.

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

Iinatti, J. H. J.

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

Illing, L.

L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006).
[CrossRef] [PubMed]

Jacquot, M.

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

Jaeger, N. A. F.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Jeong, M. I.

M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
[CrossRef]

Kado, Y.

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

Kato, H.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Kravitz, D.

D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Kukutsu, N.

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Lai, C.

C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[CrossRef]

Larger, L.

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

M. W. Lee, L. Larger, V. Udaltsov, E. Genin, J.-P. Goedgebuer, “Demonstration of a chaos generator with two time delays,” Opt. Lett. 29(4), 325–327 (2004).
[CrossRef] [PubMed]

Latva-aho, M.

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

Lee, C. S.

M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
[CrossRef]

Lee, J. N.

M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
[CrossRef]

Lee, M. W.

Li, W.

Lin, F. Y.

F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

Liu, J.

J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
[CrossRef] [PubMed]

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Liu, J. G.

Liu, J. M.

F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

Liu, T.-G.

Liur, G.

H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
[CrossRef]

Livingston, M.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Lu, Y.

H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
[CrossRef]

Meng, L.-N.

Nagatsuma, T.

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

Narayanan, R. M.

S. C. Surender, R. M. Narayanan, “UWB noise-OFDM netted radar: Physical layer design and analysis,” IEEE Trans. Aerosp. Electron. Syst. 47(2), 1380–1400 (2011).
[CrossRef]

C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[CrossRef]

Nichols, L. T.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Pan, S. L.

Parent, M. G.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Peil, M.

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

Peled, Y.

Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
[CrossRef]

Popov, O.

S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
[CrossRef]

Porcino, D.

D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Reid, A.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Román, J. E.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Shao, T.

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Shimizu, N.

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

Song, H.-J.

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

Sun, H.

H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
[CrossRef]

Surender, S. C.

S. C. Surender, R. M. Narayanan, “UWB noise-OFDM netted radar: Physical layer design and analysis,” IEEE Trans. Aerosp. Electron. Syst. 47(2), 1380–1400 (2011).
[CrossRef]

Tavik, G. C.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Teng, H.-F.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Tesi, R.

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

Tsai, H. J.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Tur, M.

Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
[CrossRef]

Udaltsov, V.

Wang, A.-B.

Wang, H.

J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
[CrossRef] [PubMed]

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Wang, L.

J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
[CrossRef] [PubMed]

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Wang, L. X.

Wang, S.

Wang, Y.-C.

Williams, K. J.

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

Wu, M.-L.

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Yao, J.

Zadok, A.

D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
[CrossRef]

Zhang, M.-J.

Zhang, Z.-X.

Zheng, J.

J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
[CrossRef] [PubMed]

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Zheng, J. Y.

Zheng, J.-Y.

Zhu, N.

J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
[CrossRef] [PubMed]

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

Zhu, N. H.

Appl. Opt. (1)

Chaos (1)

L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006).
[CrossRef] [PubMed]

IEEE Aerosp. Electron. Syst. Mag. (1)

H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002).
[CrossRef]

IEEE Microwave Mag. (1)

J. Yao, “Photonics for ultrawideband communications,” IEEE Microwave Mag. 10(4), 82–95 (2009).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010).
[CrossRef]

Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010).
[CrossRef]

D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

IEEE Trans. Aerosp. Electron. Syst. (2)

C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[CrossRef]

S. C. Surender, R. M. Narayanan, “UWB noise-OFDM netted radar: Physical layer design and analysis,” IEEE Trans. Aerosp. Electron. Syst. 47(2), 1380–1400 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (3)

S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008).
[CrossRef]

H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008).
[CrossRef]

J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998).
[CrossRef]

J. Electromagn. Waves Appl. (1)

M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[CrossRef]

Other (2)

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in Proceedings of 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.
[CrossRef]

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Equivalent model of the distributed PolM-to-IM convertor, PolM: Polarization modulator, PBS: polarization beam splitter, and (b) its transfer function curves.

Fig. 2
Fig. 2

(a) Experimental setup of the PolM based OEO with dual-loops, TLS: tunable laser source, C: optical coupler, PolM: polarization modulator, PBS: polarization beam splitter, ODL: optical delay line, PBC: polarization beam combiner, SMF: single mode fiber, PD: photodetector, UWB filter: ultra-wide band filter, EA: electrical amplifier, S: electrical splitter, (b) the response curve of the UWB band pass filter used in the feedback loop of the OEO and (c) the simulated response curve of the PolM based two-taps MPF used in the OEO.

Fig. 3
Fig. 3

Power spectra (a), time sequence (b), auto-correlation trace (c), and phase portrait (d) of the UWB noise signals output from the chaotic OEO with single-loop.

Fig. 4
Fig. 4

Power spectra (a), time sequence (b), auto-correlation trace (c), and phase portrait (d) of the UWB noise signals output from the chaotic OEO with dual-loops (ΔτD = 384.6 ps).

Fig. 5
Fig. 5

Experiment setup of the fiber-distributed UWB noise radar with colorless base station, PolM: polarization modulator, OC: optical circulator, SMF: single mode fiber, C: optical coupler, P: polarizer, PD: photodetector, EA: electrical amplifier, IM: intensity modulator, OSC: oscilloscope, S: electrical splitter. Inset: response curve of the UWB antenna (point-to-point)

Fig. 6
Fig. 6

Power spectra of the probing signals recorded after the PD2 (a-1), the antenna 2 (a-2), and the EA (a-3), the time sequence of the reused light detected by the PD1 as it is without (b-1) or with (b-2) the modulation from the IM, the cross-correlation trace between the probing and reference signals (b-3). All the results were recorded as the OEO worked with single-loop and the antenna 1 was pointed to the antenna 2 directly without any separation.

Fig. 7
Fig. 7

Power spectra of the probing signals recorded after the PD2 (a-1), the antenna 2 (a-2), and the EA (a-3), the time sequence of the reused light detected by the PD1 as it is without (b-1) or with (b-2) the modulation from the IM, the cross-correlation trace between the probing and reference signals (b-3). All the results were recorded as the OEO worked with dual-loops (ΔτD = 384.6 ps) and the antenna 1 was pointed to the antenna 2 directly without any separation.

Fig. 8
Fig. 8

Cross-correlation traces with the target 15, 75, and 225 cm away from the antennas, respectively. OEO worked with single-loop (a) and dual-loops (ΔτD = 384.6 ps) (b).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

[ E x ( t ) E y ( t ) ] = 2 2 E 0 e j ω c t [ e j ( β V ( t ) + φ 0 + Δ φ ) e j β V ( t ) ]
E u p p e r ( t ) = cos ( π / 4 + α ) E x ( t ) + cos ( π / 4 α ) E y ( t )
E l o w e r ( t ) = sin ( π / 4 α ) E x ( t ) sin ( π / 4 + α ) E y ( t )
E u p p e r ( t ) = E 0 exp ( j ( w c t + ( φ 0 + Δ φ ) / 2 ) ) cos ( β V ( t ) + ( φ 0 + Δ φ ) / 2 )
E l o w e r ( t ) = E 0 exp ( j ( w c t + ( φ 0 + Δ φ ) / 2 + π / 2 ) ) ( sin ( β V ( t ) + ( φ 0 + Δ φ ) / 2 )
T u p p e r ( t ) = | E u p p e r ( t ) | 2 / | E 0 e j w c t | 2 = 1 / 2 ( 1 + cos ( 2 β V ( t ) + φ 0 + Δ φ ) )
T l o w e r ( t ) = | E u p p e r ( t ) | 2 / | E 0 e j w c t | 2 = 1 / 2 ( 1 cos ( 2 β V ( t ) + φ 0 + Δ φ ) )
T u p p e r ( t ) = 1 / 2 + β V ( t )
T l o w e r ( t ) = 1 / 2 β V ( t )
x + τ d x d t = m T u p p e r ( x ( t τ D ) ) + m T l o w e r ( x ( t ( τ D + Δ τ D ) ) ,
( 1 + τ θ ) x + τ d x d t + θ 1 t 0 t x ( s ) d s = , m T u p p e r ( x ( t τ D ) ) + m T l o w e r ( x ( t ( τ D + Δ τ D ) )
H ( f ) = a a exp ( j 2 π f Δ τ D ) ,

Metrics