Abstract

We investigate the dependence of the amplitude-phase coupling in quantum-dot (QD) lasers on the charge-carrier scattering timescales. The carrier scattering processes influence the relaxation oscillation parameters, as well as the frequency chirp, which are both important parameters when determining the modulation performance of the laser device and its reaction to optical perturbations. We find that the FM/AM response exhibits a strong dependence on the modulation frequency, which leads to a modified optical response of QD lasers when compared to conventional laser devices. Furthermore, the frequency response curve changes with the scattering time scales, which can allow for an optimization of the laser stability towards optical perturbations.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Benjamin Lingnau, Weng W. Chow, and Kathy Lüdge, "Erratum: Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics," Opt. Express 22, 9413-9413 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-8-9413

References

  • View by:
  • |
  • |
  • |

  1. W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
    [CrossRef]
  2. G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995).
    [CrossRef]
  3. T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [CrossRef]
  4. S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
    [CrossRef]
  5. N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
    [CrossRef]
  6. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
    [CrossRef] [PubMed]
  7. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
    [CrossRef]
  8. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
    [CrossRef]
  9. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
    [CrossRef]
  10. B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
    [CrossRef]
  11. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  12. C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005).
    [CrossRef]
  13. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
    [CrossRef]
  14. H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
    [CrossRef]
  15. M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.
  16. C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).
  17. F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
    [CrossRef] [PubMed]
  18. S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
    [CrossRef]
  19. C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
    [CrossRef]
  20. B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
    [CrossRef]
  21. B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
    [CrossRef]
  22. H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005).
    [CrossRef]
  23. K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
    [CrossRef]
  24. L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
    [CrossRef]
  25. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
    [CrossRef]
  26. C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
    [CrossRef]
  27. D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
    [CrossRef]
  28. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
    [CrossRef]
  29. F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
    [CrossRef]
  30. S. Melnik, G. Huyet, A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
    [CrossRef] [PubMed]
  31. M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007).
    [CrossRef]
  32. E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
    [CrossRef]
  33. J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
    [CrossRef]
  34. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
    [CrossRef]
  35. K. Lüdge, “Modeling quantum dot based laser devices,” in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, K. Lüdge, ed. (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34.
  36. K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
    [CrossRef]
  37. K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).
  38. B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
    [CrossRef]
  39. E. J. Doedel, B. E. Oldeman, Auto-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, Canada (2009).
  40. K. Lüdge, E. Schöll, “Temperature dependent two-state lasing in quantum dot lasers,” “Laser Dynamics and Nonlinear Photonics, Fifth Rio De La Plata Workshop 6–9 Dec. 2011,” (IEEE Publishing Services, New York, 2012), IEEE Conf. Proc., pp. 1–6.
  41. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
    [CrossRef]
  42. C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
    [CrossRef]
  43. M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
    [CrossRef]
  44. T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
    [CrossRef]
  45. F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
    [CrossRef]

2013 (5)

W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[CrossRef]

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

2012 (8)

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

2011 (5)

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
[CrossRef]

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

2010 (3)

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).

2009 (2)

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

2007 (4)

M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
[CrossRef]

T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

2006 (1)

2005 (4)

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005).
[CrossRef]

C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

1999 (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

1995 (1)

G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995).
[CrossRef]

1991 (1)

E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
[CrossRef]

1987 (1)

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[CrossRef]

1983 (1)

C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

1980 (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Accard, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Albert, F.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Amann, A.

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

Arsenijevic, D.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

Asryan, L. V.

L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
[CrossRef]

Aust, R.

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

Azouigui, S.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Bimberg, D.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

Bonatto, C.

B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Brandonisio, N.

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

Buus, J.

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[CrossRef]

Chen, J.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Chow, W. W.

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
[CrossRef]

Cong, D. Y.

Dagens, B.

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Doedel, E. J.

E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
[CrossRef]

E. J. Doedel, B. E. Oldeman, Auto-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, Canada (2009).

Dommers-Völkel, S.

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

Eisenstein, G.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

Erneux, T.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

Erzgräber, H.

H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
[CrossRef]

Even, J.

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
[CrossRef]

Fiol, G.

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

Fiore, A.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Fischer, M.

Forchel, A.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Fordell, T.

T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Gerschütz, F.

Gioannini, M.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007).
[CrossRef]

M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.

Globisch, B.

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

Gomis-Bresco, J.

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

Goulding, D.

Gready, D.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

Grillot, F.

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Harder, C.

C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Hegarty, S. P.

B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef] [PubMed]

Heinricht, P.

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

Höfling, S.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Hopfmann, C.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Huyet, G.

Jahnke, F.

W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[CrossRef]

Kamp, M.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Kanter, I.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Kelleher, B.

B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef] [PubMed]

Keller, H. B.

E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
[CrossRef]

Kervenez, J. P.

E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
[CrossRef]

Kim, J.

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

Kinzel, W.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Kobayashi, K.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Koeth, J.

Kovanis, V.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

Krauskopf, B.

H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Lelarge, F.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Lemaitre, A.

Lenstra, D.

H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995).
[CrossRef]

Lester, L. F.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Lindberg, A. M.

T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Lingnau, B.

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Lüdge, K.

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
[CrossRef]

K. Lüdge, E. Schöll, “Temperature dependent two-state lasing in quantum dot lasers,” “Laser Dynamics and Nonlinear Photonics, Fifth Rio De La Plata Workshop 6–9 Dec. 2011,” (IEEE Publishing Services, New York, 2012), IEEE Conf. Proc., pp. 1–6.

K. Lüdge, “Modeling quantum dot based laser devices,” in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, K. Lüdge, ed. (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34.

Majer, N.

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Malloy, K. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Martinez, A.

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef] [PubMed]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Masoller, C.

C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005).
[CrossRef]

Melnik, S.

Meuer, C.

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

Montrosset, I.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007).
[CrossRef]

M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.

Naderi, N.

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

Naderi, N. A.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

O’Brien, S.

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

Oldeman, B. E.

E. J. Doedel, B. E. Oldeman, Auto-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, Canada (2009).

Osborne, S.

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

Osinski, M.

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[CrossRef]

Otto, C.

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).

Pausch, J.

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

Pochet, M.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

Provost, J. G.

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Ramdane, A.

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef] [PubMed]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Reitzenstein, S.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Schmeckebier, H.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

Schneider, C.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Schöll, E.

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

K. Lüdge, E. Schöll, “Temperature dependent two-state lasing in quantum dot lasers,” “Laser Dynamics and Nonlinear Photonics, Fifth Rio De La Plata Workshop 6–9 Dec. 2011,” (IEEE Publishing Services, New York, 2012), IEEE Conf. Proc., pp. 1–6.

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
[CrossRef]

Simpson, T.

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Stintz, A.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Stubenrauch, M.

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

Su, H.

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005).
[CrossRef]

Suris, R. A.

L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
[CrossRef]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Terry, N. B.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

The, G. A. P.

M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.

Thedrez, B.

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Torre, M. S.

C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005).
[CrossRef]

Tylaite, E.

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

Uskov, A. V.

Vahala, K.

C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

van Tartwijk, G. H. M.

G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995).
[CrossRef]

Viktorov, E. A.

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

Wang, C.

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Woggon, U.

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

Worschech, L.

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

Wu, Y.

L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
[CrossRef]

Yariv, A.

C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Ziemann, D.

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

Zou, Q.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011).
[CrossRef]

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012).
[CrossRef]

D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013).
[CrossRef]

N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011).
[CrossRef]

C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Electron. Lett. (1)

B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Europhys. Lett. (1)

D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013).
[CrossRef]

IEEE J. Quantum Electron. (10)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005).
[CrossRef]

C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012).
[CrossRef]

K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010).
[CrossRef]

J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010).
[CrossRef]

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[CrossRef]

M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007).
[CrossRef]

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[CrossRef]

T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Int. J. Bif. Chaos (2)

C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012).
[CrossRef]

E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991).
[CrossRef]

J. Appl. Phys. (1)

K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005).
[CrossRef]

Nature Communications (1)

F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011).
[CrossRef] [PubMed]

New J. Phys. (2)

B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012).
[CrossRef]

Nonlinear Phenom. Complex Syst. (1)

K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Phys. Rev. E (3)

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[CrossRef]

B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

phys. stat. sol. (b) (1)

C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).

Prog. Quantum Electron. (1)

W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[CrossRef]

Quantum Semi-class. Opt. (1)

G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995).
[CrossRef]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Semicond. Sci. Technol. (1)

S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012).
[CrossRef]

SIAM J. Appl. Dyn. Syst. (1)

H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007).
[CrossRef]

Other (5)

M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.

K. Lüdge, “Modeling quantum dot based laser devices,” in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, K. Lüdge, ed. (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34.

E. J. Doedel, B. E. Oldeman, Auto-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, Canada (2009).

K. Lüdge, E. Schöll, “Temperature dependent two-state lasing in quantum dot lasers,” “Laser Dynamics and Nonlinear Photonics, Fifth Rio De La Plata Workshop 6–9 Dec. 2011,” (IEEE Publishing Services, New York, 2012), IEEE Conf. Proc., pp. 1–6.

B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dependence of the QD laser dynamics on the effective electron scattering lifetimes, as defined in Eq. (14). Shown are the relaxation oscillation angular frequency ωRO (red) and damping ΓRO (blue). The gray dashed vertical lines show the inverse electron lifetimes for the full rates as in Tab. 2 and 50-fold reduced rates, as will be used in Figs. 2 and 3, respectively. The gray shaded area shows the overdamped regime. The pump current was adjusted at each data point to twice the respective threshold current.

Fig. 2
Fig. 2

Bifurcation diagram of the QD laser under optical injection, depending on injection strength K and detuning Δνinj. The color code denotes the different regimes of dynamics from a phase-locked state (white) over periodic orbits of different periodicity (gray) to irregular or chaotic behavior (black) obtained by direct integration. Thick solid and dashed lines are obtained by numerical path continuation and denote saddle-node on an invariant cycle (SNIC) and Hopf-bifurcations, where the black parts denote bifurcations of the stable phase-locked solution, and light gray denotes bifurcations of an unstable solution. Blue (gray) solid thin lines denote period doubling (PD) bifurcations. (a) Results using the full model. (b) Results using an α-factor. J = 2Jth. The solitary laser effective QW recombination and QD scattering lifetimes are τ loss w [ R loss w ( w e + w h ) ] 1 = 0.21 ns , and τe = 2ps (τh = 1ps), respectively.

Fig. 3
Fig. 3

Bifurcation diagram of the QD laser under optical injection, with capture and relaxation scattering rates reduced by a factor 50 compared to Tab. 2. Cf. Fig. 2. (a), (b) show the results for full losses, (c), (d) for reduced losses. J = 2Jth. Solitary laser full losses: τ loss w = 0.15 ns ; τe = 76ps; τh = 44ps. Solitary laser reduced losses in the reservoir: τ loss w = 1.5 ns ; τe = 80ps; τh = 45ps.

Fig. 4
Fig. 4

Dependence of the static α-factor under optical injection on the scattering lifetimes. Solid and dashed lines show the dependence of αE for full and reduced losses, respectively. The gray shaded area shows the overdamped regime, cf. Fig. 1.

Fig. 5
Fig. 5

Frequency dependence of the amplitude-phase coupling. Shown is the ratio of the frequency chirp to gain modulation depth |Δω(f)|/|Δg(f)|, under either a direct modulation of the electric field (red), or pump current (blue). The results are plotted for full carrier reservoir losses (solid lines) and for reduced losses (dashed lines), with (a) full scattering, and (b) reduced scattering. J = 2Jth.

Tables (2)

Tables Icon

Table 2 Parameters used in the simulations unless noted otherwise.

Tables Icon

Table 1 Fit parameters for charge-carrier scattering processes, extracted from microscopic calculations for a GS confinement energy of 64(35)meV and a GS-ES separation of 50(20)meV for electrons (holes), and T = 300K.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

t E = [ ( g i δ ω ) κ ] E + K κ E 0 exp ( i ω inj t )
t ρ GS , b act = 2 g f act a L 2 N Q D | E | 2 R sp , GS act + S GS , b cap , act + S b rel , act
t ρ GS , b inact = R sp , GS inact + S GS , b cap , inact + S b rel , inact
t ρ ES , b = R sp , ES + S ES , b cap 1 2 ( f act S b rel , act + f inact S b rel , inact )
t w b = 2 N QD ( f act S GS , b cap , act + f inact S GS , b cap , inact ) 4 N QD S ES , b cap r loss w + J .
g = g GS ( ρ GS , e act + ρ GS , h act 1 ) ,
δ ω = δ ω ES ( ρ ES , e + ρ ES , h ) + δ ω QW e w e + δ ω QW h w h .
S m , b cap , ( in ) act = S m , b cap , in ( 1 ρ m , b ( in ) act ) S m , b cap , out ρ m , b ( in ) act
S b rel , ( in ) act = S b rel , in ρ ES , b ( 1 ρ GS , b ( in ) act ) S b rel , out ( 1 ρ ES , b ) ρ GS , b ( in ) act .
S m , b cap , in ( w b ) = A m , b w b 2 B m , b + w b
S b rel , in ( w b ) = C b w b D b + w b ,
S m , b cap , out = S m , b cap , in exp ( E F b eq ε m , b k B T )
S b rel , out = S b rel , in exp ( ε ES , b ε GS , b k B T ) ,
τ b = ( S GS , b cap , in + S GS , b cap , out + S GS rel , in ρ ES , b + S GS rel , out ( 1 ρ ES , b ) ) 1 .
I ( t ) = I 0 + | a exp [ ( Γ RO + i ω RO ) t ] | + b exp ( γ t ) ,
δ ω ( t ) = δ ω 0 + Δ ω ( f ) cos ( 2 π f t + ϕ ω 0 ) ,
Δ ω = α Δ g .
J ( t ) = J 0 + Δ J cos ( 2 π f t )
t E ( t ) = [ ( g ( t ) i δ ω ( t ) ) κ ] E ( t ) + k E 0 cos ( 2 π f t ) ,

Metrics