Abstract

The development of linear quantum computing within integrated circuits demands high quality semiconductor single photon sources. In particular, for a reliable single photon source it is not sufficient to have a low multi-photon component, but also to possess high efficiency. We investigate the photon statistics of the emission from a single quantum dot with a method that is able to sensitively detect the trade-off between the efficiency and the multi-photon contribution. Our measurements show, that the light emitted from the quantum dot when it is resonantly excited possess a very low multi-photon content. Additionally, we demonstrated, for the first time, the non-Gaussian nature of the quantum state emitted from a single quantum dot.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
    [CrossRef]
  2. S. Scheel, “Single-photon sources-an introduction,” J. Mod. Opt. 56, 141–160 (2009).
    [CrossRef]
  3. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  4. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
    [CrossRef]
  5. M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
    [CrossRef] [PubMed]
  6. T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
    [CrossRef]
  7. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1997).
  8. R. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).
  9. R. L. Hudson, “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6, 249–252 (1974).
    [CrossRef]
  10. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
    [CrossRef] [PubMed]
  11. R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011).
    [CrossRef] [PubMed]
  12. Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
    [CrossRef] [PubMed]
  13. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
    [CrossRef] [PubMed]
  14. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
    [CrossRef]
  15. H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
    [CrossRef] [PubMed]
  16. T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
    [CrossRef] [PubMed]
  17. M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
    [CrossRef]
  18. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2008).
  19. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
    [CrossRef]
  20. A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
    [CrossRef]
  21. O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization entangled photons,” Opt. Express 15, 15377–15386 (2007).
  22. J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
    [CrossRef] [PubMed]
  23. J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
    [CrossRef] [PubMed]
  24. V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
    [CrossRef]
  25. A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012).
    [CrossRef]
  26. A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [CrossRef] [PubMed]
  27. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]

2013 (1)

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

2012 (3)

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012).
[CrossRef]

A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
[CrossRef]

2011 (3)

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011).
[CrossRef] [PubMed]

T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

2010 (1)

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
[CrossRef] [PubMed]

S. Scheel, “Single-photon sources-an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

2008 (2)

M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
[CrossRef] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

2007 (4)

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[CrossRef]

O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization entangled photons,” Opt. Express 15, 15377–15386 (2007).

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

2004 (2)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

2002 (1)

J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

1993 (1)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
[CrossRef] [PubMed]

1986 (1)

P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

1974 (1)

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6, 249–252 (1974).
[CrossRef]

Aichele, T.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Akimov, I. A.

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

Aspect, A.

P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Barbieri, M.

T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Benson, O.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Betke, A.

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

Beveratos, A.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Bloch, J.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Browne, D. E.

M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
[CrossRef] [PubMed]

Cerf, N. J.

J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
[CrossRef] [PubMed]

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Danzmann, K.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Dousse, A.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Dušek, M.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

Eisert, J.

A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012).
[CrossRef]

J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
[CrossRef] [PubMed]

Emerson, J.

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Ferrie, C.

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

Filip, R.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011).
[CrossRef] [PubMed]

Fiurášek, J.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
[CrossRef] [PubMed]

Flissikowski, T.

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Furusawa, A.

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

Glauber, R.

R. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).

Goler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Grabher, S.

Grangier, P.

P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Gross, D.

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Hansen, H.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Henneberger, F.

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

Huber, T.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

Hudson, R. L.

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6, 249–252 (1974).
[CrossRef]

Jayakumar, H.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

Jennewein, T.

T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Ježek, M.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

Kauten, T.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

Kimble, H. J.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Krebs, O.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Kuzucu, O.

Laflamme, R.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Lematre, A.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1997).

Lvovsky, A. I.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Mari, A.

A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012).
[CrossRef]

Mehmet, M.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Micuda, M.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2008).

Mišta, L.

R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011).
[CrossRef] [PubMed]

Mlynek, J.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Niset, J.

J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
[CrossRef] [PubMed]

O’Brien, J. L.

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
[CrossRef] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
[CrossRef] [PubMed]

Plenio, M. B.

J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
[CrossRef] [PubMed]

Predojevic, A.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
[CrossRef]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Roger, G.

P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Rudolph, T.

M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
[CrossRef] [PubMed]

Sagnes, I.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Scheel, S.

S. Scheel, “Single-photon sources-an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
[CrossRef] [PubMed]

Schiller, S.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

Schnabel, R.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Senellart, P.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Solomon, G. S.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Straka, I.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

Suffczyski, J.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Takeno, Y.

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

Varnava, M.

M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
[CrossRef] [PubMed]

Veitch, V.

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

Voisin, P.

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Waks, E.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Walls, D. F.

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2008).

Weihs, G.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
[CrossRef]

White, A.

T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Wong, F. N. C.

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Yonezawa, H.

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

Yukawa, M.

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

Europhys. Lett. (1)

P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

J. Mod. Opt. (1)

T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

J. Mod. Opt. (1)

S. Scheel, “Single-photon sources-an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

Nature (2)

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

New. J. Phys (1)

V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012).
[CrossRef]

Opt. Express (2)

Optics Express (1)

Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007).
[CrossRef]

Phys. Rev. B (1)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004).
[CrossRef]

Phys. Rev. Lett. (11)

J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002).
[CrossRef] [PubMed]

J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009).
[CrossRef] [PubMed]

A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012).
[CrossRef]

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013).
[CrossRef] [PubMed]

T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004).
[CrossRef] [PubMed]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011).
[CrossRef]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001).
[CrossRef] [PubMed]

R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993).
[CrossRef] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008).
[CrossRef] [PubMed]

M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008).
[CrossRef] [PubMed]

Rep. Math. Phys. (1)

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6, 249–252 (1974).
[CrossRef]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Science (1)

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[CrossRef]

Other (3)

U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1997).

R. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Excitation level scheme and detection scheme. a) Resonant excitation coherently drives the two-photon transition between the ground |g〉 and the biexciton |b〉 state via a virtual level shown as a dashed gray line. The system decays in a cascade via the exciton |x〉 state. Of the two possible decay paths we use only the vertical polarization. Above-band excitation excites the carriers in the surrounding material. b) After spectrally resolving the emission on a diffraction grating (not shown in the figure) the spectral lines of interest (exciton and biexciton) were separated and coupled into optical fibres. A fibre beamsplitter divided the exciton light onto two detectors for state verification. The biexciton detections were used as trigger events.

Fig. 2
Fig. 2

The intensity autocorrelation measurement and the multi-photon contribution, p2+, plotted as a function of the single photon contribution, p1. a The exciton signal shows excellent suppression of multi-photon events which can be quantitatively expressed by intensity autocorrelation parameter of 0.031(2). The plotted data was acquired without the triggering on biexciton photon and is presented without background subtraction. The decaying peak height observable on both sides of the graph results from the blinking of the quantum dot [19]. b Here, �� is the set of all mixtures of Gaussian states, and the lower, white region indicates non-Gaussian states. The circles stand for results obtained in resonant and pulsed excitation while triangles for above-band and continuous wave excitation. In particular, the green circle stands for the result presented in the first row of the Table 2, and the yellow circles for the results presented in the remaining rows. The error bars represent standard deviations, the horizontal error bars of p1 are smaller than the size of the symbols. The solid blue curve represents the boundary presented in [17] and given by Eq. (4). The orange dashed line marks the limit of the detection system in continuous excitation.

Fig. 3
Fig. 3

Overall efficiency of the quantum dot photon source as a function of the excitation power and comparison between a single quantum dot and a down-conversion source. a) Here, the blue dashed line marks the probability of the detection of the single photon from a quantum dot under resonant excitation, p1. The gray circles show the same probability under above-band excitation. For the latter we varied the excitation power up to the saturation of the biexciton (4 mW - measured at the point where laser beam meets the cleaved edge of the sample, [15]) and observe a decrease of p1. All measurements presented in this figure were obtained using single mode fibres to collect the quantum dot emission. The coincidence window for these data was 7 ns. b) The blue dots are results of measurements performed on the emission for a down-conversion source. Here, p1 is gradually reduced through attenuation. The green dot shows the result for the quantum dot. The same point is plotted, also in green, in Fig 2(b).

Tables (3)

Tables Icon

Table 1 Above-band excitation estimated probabilities p0, p1, p2+ and the corresponding sign of the witness, ΔW, shown for several different coincidence window widths, w. The last column also indicates the distance of the measured point to the border separating the two classes of states. This distance is given in number of standard deviations, σ

Tables Icon

Table 2 Resonant pulsed excitation allows us to distinguish our state from a mixture of Gaussian states, which is witnessed by ΔW > 0. As in the Table 1 the last column indicates the sign of the of the witness, ΔW, (+) indicating non-Gaussian and (−) Gaussian state. The distance is also given in number of standard deviations, σ

Tables Icon

Table 3 Photon statistics measurement was performed on a down-conversion source. The coincidence window was here equal for all the measurements w=1.2 ns

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p 0 = 1 R 1 A + R 1 B + R 2 R 0 .
p 1 , est = R 1 A + R 1 B R 0 T 2 + ( 1 T ) 2 2 T ( 1 T ) R 2 R 0 ,
p 2 + = 1 p 0 p 1 .
p 0 = e d 2 [ 1 tanh ( r ) ] cosh ( r ) , p 1 = d 2 e d 2 [ 1 tanh ( r ) ] cosh 3 ( r ) ,

Metrics