Abstract

Diagnostics with three-dimensional (3D) spatial resolution and rapid temporal resolution have been long desired to resolve the complicated turbulence-chemistry interactions. This paper describes a method based on based on tomographic chemiluminescence (TC) to address this diagnostic need. The TC technique used multiple cameras to simultaneously record CH* chemiluminescence emitted by turbulent flames from different view angles. A 3D tomographic algorithm was then applied to reconstruct the instantaneous flame structures volumetrically. Both experimental and computational studies have been conducted to demonstrate and validate the 3D measurements. Experimental results were obtained instantaneously at kHz temporal rate, in a volume of 16 × 16 × 16 cm3, and with a spatial resolution estimated to be 2~3 mm. Computations were conducted to simulate the experimental conditions for comparison and validation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31(1), 49–75 (2007).
    [CrossRef]
  2. L. Ma, “High Speed Imaging in Reactive Flows Using Hyperspectral Tomography and Photodissociation Spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, OSA Technical Digest Series, Paper LWA3, 2010)
  3. L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of High Speed Imaging in Practical Propulsion Systems Using Hyperspectral Tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, OSA Technical Digest, paper LM1B.5., 2012)
  4. R. Wellander, M. Richter, M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19(22), 21508–21514 (2011).
    [CrossRef] [PubMed]
  5. J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
    [CrossRef]
  6. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
    [CrossRef] [PubMed]
  7. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, “Simultaneous Measurements of Multiple Flow Parameters for Scramjet Characterization Using Tunable Diode-laser Sensors,” Appl. Opt. 50(36), 6697–6707 (2011).
    [CrossRef] [PubMed]
  8. D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
    [CrossRef]
  9. J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
    [CrossRef]
  10. R. Snyder, L. Hesselink, “Measurement of mixing fluid flows with optical tomography,” Opt. Lett. 13(2), 87–89 (1988).
    [CrossRef] [PubMed]
  11. W. Cai, X. Li, F. Li, L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
    [CrossRef] [PubMed]
  12. Y. Hardalupas, M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame 139(3), 188–207 (2004).
    [CrossRef]
  13. Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
    [CrossRef]
  14. O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
    [CrossRef]
  15. J. Floyd, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
    [CrossRef]
  16. N. Denisova, P. Tretyakov, A. Tupikin, “Emission tomography in flame diagnostics,” Combust. Flame 160(3), 577–588 (2013).
    [CrossRef]
  17. N. A. Worth, J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
    [CrossRef]
  18. W. Cai, A. J. Wickersham, and L. Ma, “Three-Dimensional Combustion Diagnostics Based on Computed Tomography of Chemiluminescence,” in 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, (Dallas Region, TX, 2013).
    [CrossRef]
  19. X. Li and L. Ma, Three-Dimensional Measurements of Turbulent Jet Flames at kHz Rate Based on Tomographic Chemiluminescence ” in AIAA SciTech 2014, Paper AIAA-2014–0735, (National Harbor, MD, 2014).
  20. W. Cai, L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comput. Phys. Commun. 181(12), 1974–1981 (2010).
    [CrossRef]
  21. W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
    [CrossRef]
  22. L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).
  23. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50(4), A29–A37 (2011).
    [CrossRef] [PubMed]
  24. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
    [CrossRef] [PubMed]
  25. G. Frieder, G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33(1), 189–211 (1971).
    [CrossRef] [PubMed]
  26. G. T. Herman, S. Rowland, “Resolution in algebraic reconstruction techchqique an experimental investigation of the resolving power of an algebraic picture reconstruction techniuqe,” J. Theor. Biol. 33, 213–223 (1971).
    [CrossRef] [PubMed]
  27. V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
    [CrossRef]
  28. W. Cai, X. Li, Y. Cao, J. Wang, and L. Ma, “Practical aspects of three-dimensional flame imaging using tomographic chemiluminescence ” in AIAA SciTech 2014, Paper AIAA-2014–0394, (National Harbor, MD, USA, 2014).
  29. M. Kang, X. Li, and L. Ma, “Calibration of Fiber Bundles for Flow and Combustion Measurements,” in AIAA SciTech 2014, Paper AIAA-2014–0397, (National Harbor, MD, 2014).
  30. J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
    [CrossRef]

2013 (5)

2011 (8)

J. Floyd, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[CrossRef]

J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[CrossRef]

W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
[CrossRef]

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50(4), A29–A37 (2011).
[CrossRef] [PubMed]

R. Wellander, M. Richter, M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19(22), 21508–21514 (2011).
[CrossRef] [PubMed]

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, “Simultaneous Measurements of Multiple Flow Parameters for Scramjet Characterization Using Tunable Diode-laser Sensors,” Appl. Opt. 50(36), 6697–6707 (2011).
[CrossRef] [PubMed]

2010 (1)

W. Cai, L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comput. Phys. Commun. 181(12), 1974–1981 (2010).
[CrossRef]

2009 (1)

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

2007 (2)

O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
[CrossRef]

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31(1), 49–75 (2007).
[CrossRef]

2004 (2)

Y. Hardalupas, M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame 139(3), 188–207 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

2002 (1)

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

2001 (1)

D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
[CrossRef]

1988 (1)

1971 (2)

G. Frieder, G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33(1), 189–211 (1971).
[CrossRef] [PubMed]

G. T. Herman, S. Rowland, “Resolution in algebraic reconstruction techchqique an experimental investigation of the resolving power of an algebraic picture reconstruction techniuqe,” J. Theor. Biol. 33, 213–223 (1971).
[CrossRef] [PubMed]

Alden, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Aldén, M.

An, X.

Axelsson, B.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Baba, J.

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

Barlow, R. S.

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31(1), 49–75 (2007).
[CrossRef]

Bengtsson, P. E.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Bruebach, J.

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

Bruecker, C.

J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
[CrossRef]

Cai, W.

W. Cai, X. Li, F. Li, L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[CrossRef] [PubMed]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50(4), A29–A37 (2011).
[CrossRef] [PubMed]

W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
[CrossRef]

W. Cai, L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comput. Phys. Commun. 181(12), 1974–1981 (2010).
[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

Caldeira-Pires, A.

D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
[CrossRef]

Caswell, A. W.

Chang, X.

Chen, L.

Collin, R.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Correia, D. P.

D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
[CrossRef]

Dawson, J. R.

N. A. Worth, J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[CrossRef]

Denisova, N.

N. Denisova, P. Tretyakov, A. Tupikin, “Emission tomography in flame diagnostics,” Combust. Flame 160(3), 577–588 (2013).
[CrossRef]

Dreizler, A.

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

Ewing, D. J.

W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
[CrossRef]

Ferrao, P.

D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
[CrossRef]

Floyd, J.

J. Floyd, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[CrossRef]

J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[CrossRef]

Frieder, G.

G. Frieder, G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33(1), 189–211 (1971).
[CrossRef] [PubMed]

Geipel, P.

J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[CrossRef]

Gord, J. R.

Gordon, R. L.

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

Gu, H.

Hardalupas, Y.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame 139(3), 188–207 (2004).
[CrossRef]

Herman, G. T.

G. T. Herman, S. Rowland, “Resolution in algebraic reconstruction techchqique an experimental investigation of the resolving power of an algebraic picture reconstruction techniuqe,” J. Theor. Biol. 33, 213–223 (1971).
[CrossRef] [PubMed]

G. Frieder, G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33(1), 189–211 (1971).
[CrossRef] [PubMed]

Hermann, F.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Hesselink, L.

Hult, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Janicka, J.

O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
[CrossRef]

Kaminski, C. F.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Kempf, A. M.

J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[CrossRef]

J. Floyd, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[CrossRef]

O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
[CrossRef]

Kitzhofer, J.

J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
[CrossRef]

Klingmann, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Kraetschmer, T.

Kranendonk, L.

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

Li, F.

Li, X.

Li, Z.

Ma, L.

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
[CrossRef] [PubMed]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
[CrossRef] [PubMed]

W. Cai, X. Li, F. Li, L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[CrossRef] [PubMed]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50(4), A29–A37 (2011).
[CrossRef] [PubMed]

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, “Simultaneous Measurements of Multiple Flow Parameters for Scramjet Characterization Using Tunable Diode-laser Sensors,” Appl. Opt. 50(36), 6697–6707 (2011).
[CrossRef] [PubMed]

W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
[CrossRef]

W. Cai, L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comput. Phys. Commun. 181(12), 1974–1981 (2010).
[CrossRef]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

Nonn, T.

J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
[CrossRef]

Nygren, J.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Olofsson, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Omrane, A.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

Orain, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame 139(3), 188–207 (2004).
[CrossRef]

Panoutsos, C. S.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Plemmons, D. H.

Richter, M.

R. Wellander, M. Richter, M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19(22), 21508–21514 (2011).
[CrossRef] [PubMed]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Rowland, S.

G. T. Herman, S. Rowland, “Resolution in algebraic reconstruction techchqique an experimental investigation of the resolving power of an algebraic picture reconstruction techniuqe,” J. Theor. Biol. 33, 213–223 (1971).
[CrossRef] [PubMed]

Roy, S.

Sanders, S. T.

Seyfried, H.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Snyder, R.

Stein, O.

O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
[CrossRef]

Takami, K.

Taylor, A.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Tretyakov, P.

N. Denisova, P. Tretyakov, A. Tupikin, “Emission tomography in flame diagnostics,” Combust. Flame 160(3), 577–588 (2013).
[CrossRef]

Tupikin, A.

N. Denisova, P. Tretyakov, A. Tupikin, “Emission tomography in flame diagnostics,” Combust. Flame 160(3), 577–588 (2013).
[CrossRef]

Weber, V.

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

Wellander, R.

Worth, N. A.

N. A. Worth, J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[CrossRef]

Yu, X.

Zhao, Y.

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, “Simultaneous Measurements of Multiple Flow Parameters for Scramjet Characterization Using Tunable Diode-laser Sensors,” Appl. Opt. 50(36), 6697–6707 (2011).
[CrossRef] [PubMed]

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

Appl. Math. Comput. (1)

W. Cai, D. J. Ewing, L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput. 217(12), 5754–5767 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

V. Weber, J. Bruebach, R. L. Gordon, A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[CrossRef]

Appl. Therm. Eng. (1)

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Alden, F. Hermann, J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng. 24, 1619–1632 (2004).
[CrossRef]

Combust. Flame (3)

J. Floyd, P. Geipel, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[CrossRef]

Y. Hardalupas, M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame 139(3), 188–207 (2004).
[CrossRef]

N. Denisova, P. Tretyakov, A. Tupikin, “Emission tomography in flame diagnostics,” Combust. Flame 160(3), 577–588 (2013).
[CrossRef]

Combust. Sci. Technol. (2)

O. Stein, A. M. Kempf, J. Janicka, “LES of the sydney swirl flame series: An initial investigation of the fluid dynamics,” Combust. Sci. Technol. 179, 173–189 (2007).
[CrossRef]

D. P. Correia, P. Ferrao, A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163(1), 1–24 (2001).
[CrossRef]

Comput. Phys. Commun. (1)

W. Cai, L. Ma, “Comparison of approaches based on optimization and algebraic iteration for binary tomography,” Comput. Phys. Commun. 181(12), 1974–1981 (2010).
[CrossRef]

Exp. Fluids (2)

J. Kitzhofer, T. Nonn, C. Bruecker, “Generation and visualization of volumetric PIV data fields,” Exp. Fluids 51(6), 1471–1492 (2011).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P. E. Bengtsson, M. Alden, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33(2), 265–269 (2002).
[CrossRef]

J. Aerosol Sci. (1)

L. Ma, L. Kranendonk, W. Cai, Y. Zhao, J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 2009, 588–596 (2009).

J. Theor. Biol. (2)

G. Frieder, G. T. Herman, “Resolution in reconstructing objects from electron micrographs,” J. Theor. Biol. 33(1), 189–211 (1971).
[CrossRef] [PubMed]

G. T. Herman, S. Rowland, “Resolution in algebraic reconstruction techchqique an experimental investigation of the resolving power of an algebraic picture reconstruction techniuqe,” J. Theor. Biol. 33, 213–223 (1971).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

N. A. Worth, J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. Combust. Inst. (2)

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst. 31(1), 49–75 (2007).
[CrossRef]

J. Floyd, A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[CrossRef]

Other (6)

L. Ma, “High Speed Imaging in Reactive Flows Using Hyperspectral Tomography and Photodissociation Spectroscopy,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, OSA Technical Digest Series, Paper LWA3, 2010)

L. Ma, X. Li, S. Roy, A. Caswell, J. R. Gord, D. Plemmons, X. An, and S. T. Sanders, “Demonstration of High Speed Imaging in Practical Propulsion Systems Using Hyperspectral Tomography,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, OSA Technical Digest, paper LM1B.5., 2012)

W. Cai, A. J. Wickersham, and L. Ma, “Three-Dimensional Combustion Diagnostics Based on Computed Tomography of Chemiluminescence,” in 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, (Dallas Region, TX, 2013).
[CrossRef]

X. Li and L. Ma, Three-Dimensional Measurements of Turbulent Jet Flames at kHz Rate Based on Tomographic Chemiluminescence ” in AIAA SciTech 2014, Paper AIAA-2014–0735, (National Harbor, MD, 2014).

W. Cai, X. Li, Y. Cao, J. Wang, and L. Ma, “Practical aspects of three-dimensional flame imaging using tomographic chemiluminescence ” in AIAA SciTech 2014, Paper AIAA-2014–0394, (National Harbor, MD, USA, 2014).

M. Kang, X. Li, and L. Ma, “Calibration of Fiber Bundles for Flow and Combustion Measurements,” in AIAA SciTech 2014, Paper AIAA-2014–0397, (National Harbor, MD, 2014).

Supplementary Material (1)

» Media 1: MOV (3257 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept and mathematical formulation of TC.

Fig. 2
Fig. 2

Experimental setup. Panel (a). side view with a stable flame. Panel (b). top view with a turbulent flame.

Fig. 3
Fig. 3

Spatial resolution with various numbers of views.

Fig. 4
Fig. 4

Five simultaneously projections.

Fig. 5
Fig. 5

10 consecutive frames of projection measured by camera 3.

Fig. 6
Fig. 6

Example 3D reconstructions (Media 1).

Fig. 7
Fig. 7

Cross-sectional view from 10 consecutive 3D reconstructions.

Fig. 8
Fig. 8

Comparison of measured projections and projections calculated via ray tracing based on the 3D reconstruction.

Fig. 9
Fig. 9

Computational results obtained using phantom created to simulate the V-flame.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P(r,θ,ϕ)= x i , y i , z i F( x i , y i , z i )PSF( x i , y i , z i ;r,θ,ϕ)
min r,θ,Φ [ P m (r,θ,ϕ) P c (r,θ,ϕ)] 2 with respect to F(x,y,z)
e= i x i y i z | F i x , i y , i z rec F i x , i y , i z | i x i y i z | F i x , i y , i z | and r= cov(F F rec ) σ F σ F rec

Metrics