Abstract

A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10−3 Ω·cm corresponding to a carrier density of 1.298 × 1020 cm−3 and Hall mobility of 12.99 cm2/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
    [CrossRef]
  2. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
    [CrossRef]
  3. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [CrossRef]
  4. H. B. Li, N. Wang, X. Y. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express 16(1), 194–199 (2008).
    [CrossRef] [PubMed]
  5. N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
    [CrossRef] [PubMed]
  6. Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
    [CrossRef]
  7. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
    [CrossRef] [PubMed]
  8. D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  9. Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
    [CrossRef]
  10. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
    [CrossRef]
  11. M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
    [CrossRef] [PubMed]
  12. D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
    [CrossRef]
  13. I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75(3), 1656–1666 (1994).
    [CrossRef]
  14. G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998).
    [CrossRef]
  15. Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
    [CrossRef]
  16. J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
    [CrossRef]
  17. X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012).
    [CrossRef]
  18. M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
    [CrossRef]
  19. P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
    [CrossRef] [PubMed]
  20. C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
    [CrossRef]
  21. C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
    [CrossRef]
  22. Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
    [CrossRef]
  23. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
    [CrossRef] [PubMed]
  24. M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
    [CrossRef]
  25. X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
    [CrossRef]
  26. D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).
  27. Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
    [CrossRef]
  28. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
    [CrossRef]
  29. A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
    [CrossRef]
  30. M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013).
    [CrossRef]
  31. E. Burstein, “The anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
  32. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London Sect. B 67(10), 775–782 (1954).
    [CrossRef]

2013 (2)

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013).
[CrossRef]

2012 (3)

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012).
[CrossRef]

2011 (3)

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

2010 (1)

N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

2008 (3)

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

H. B. Li, N. Wang, X. Y. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express 16(1), 194–199 (2008).
[CrossRef] [PubMed]

2007 (1)

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

2005 (3)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[CrossRef]

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

2003 (2)

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

2001 (1)

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

2000 (4)

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[CrossRef]

1999 (1)

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

1998 (2)

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998).
[CrossRef]

1996 (2)

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).

1994 (1)

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75(3), 1656–1666 (1994).
[CrossRef]

1954 (2)

E. Burstein, “The anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London Sect. B 67(10), 775–782 (1954).
[CrossRef]

Adamovich, V. I.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Andersson, A.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Aziz, H.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Bae, J.-H.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Becker, H.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Bright, C.

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Bröms, P.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Brown, T. M.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Burroughes, J. H.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Burstein, E.

E. Burstein, “The anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).

Cacialli, F.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Cao, X.

X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012).
[CrossRef]

Chen, C.-W.

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

Chen, H.

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

Choong, V.

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Chu, C.-W.

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

Comte, P.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Cordero, S. R.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

D’Andrade, B. W.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

de Jong, M.

M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[CrossRef]

De Voigt, M.

M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[CrossRef]

Djurovich, P. I.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Fan, Y.

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

Forrest, S. R.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Friend, R. H.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Gao, Y.

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Ginley, D. S.

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Grätzel, C.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Grätzel, M.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Greiner, M.

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Greiner, M. T.

M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013).
[CrossRef]

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Helander, M.

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Helander, M. G.

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Hill, I.

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

Hirano, M.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Ho, P. K.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Hor, A.-M.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Hosono, H.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Hsieh, B.

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Hu, L.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Hu, N.-X.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Ioannidis, A.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

Irvin, G.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Ito, S.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Jacobs, D.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

Jeong, J.-A.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Jeong, S.-W.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Johansson, N.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Kahn, A.

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

Kamiya, T.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Kang, J.-W.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Kim, H.-K.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Kim, J.-J.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Kim, J.-S.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Koley, G.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

Kwok, H. S.

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

Lee, C. S.

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

Li, H. B.

Li, S. F.

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

Li, S.-H.

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

Li, Y.

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

Li, Z. Q.

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

Liao, Y. Q.

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

Liska, P.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Liu, X. D.

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

Liu, X. X.

N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
[CrossRef] [PubMed]

Liu, X. Y.

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
[CrossRef] [PubMed]

H. B. Li, N. Wang, X. Y. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express 16(1), 194–199 (2008).
[CrossRef] [PubMed]

Liu, Z. W.

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Lo, M. F.

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

Lu, Q. P.

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

Lu, Z.

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Lu, Z. H.

M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013).
[CrossRef]

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Lupo, D.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Ma, H. L.

D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).

Malliaras, G.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998).
[CrossRef]

Milliron, D.

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[CrossRef]

Mo, H. W.

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

Moon, J.-M.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Moss, T. S.

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London Sect. B 67(10), 775–782 (1954).
[CrossRef]

Murakami, T. N.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Nazeeruddin, M. K.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Ng, T. W.

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

Nomura, K.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Ohta, H.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Park, N.-J.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Park, Y.

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Parker, I. D.

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75(3), 1656–1666 (1994).
[CrossRef]

Popovic, Z. D.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Puzzo, D. P.

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Qiu, C.

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

Qiu, J.

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Salaneck, W. R.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Schwartz, J.

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

Scott, J.

G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998).
[CrossRef]

Shen, C.

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

Shen, Y.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

Shrotriya, V.

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

Spencer, M.

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

Takagi, A.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Tamayo, A.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Tang, C. W.

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Tang, W. M.

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

Thompson, M. E.

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Van Ijzendoorn, L.

M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[CrossRef]

Wang, N.

N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
[CrossRef] [PubMed]

H. B. Li, N. Wang, X. Y. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express 16(1), 194–199 (2008).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Wang, Z. B.

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Wong, M.

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

Xie, Z.

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

Xu, G.

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

Yanagi, H.

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

Yang, Y.

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

Yi, M.-S.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

Yu, N.

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Zhang, D. H.

D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).

Zhang, Y.

X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012).
[CrossRef]

Zhang, Y. J.

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

Zhao, G.

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

Zhi, X.

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

Zhu, T.

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

Adv. Funct. Mater. (1)

M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013).
[CrossRef]

Adv. Mater. (4)

Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001).
[CrossRef]

N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010).
[CrossRef] [PubMed]

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998).
[CrossRef]

Appl. Phys. Adv. Mater. (1)

D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).

Appl. Phys. Lett. (7)

Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012).
[CrossRef]

C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005).
[CrossRef]

M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[CrossRef]

Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[CrossRef]

Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011).
[CrossRef]

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007).
[CrossRef]

X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012).
[CrossRef]

J. Appl. Phys. (4)

D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000).
[CrossRef]

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75(3), 1656–1666 (1994).
[CrossRef]

G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998).
[CrossRef]

C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003).
[CrossRef]

MRS Bull. (1)

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Nat. Mater. (1)

M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012).
[CrossRef] [PubMed]

Nature (1)

P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000).
[CrossRef] [PubMed]

NPG Asia Mater. (1)

M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013).
[CrossRef]

Opt. Express (1)

Org. Electron. (1)

V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003).
[CrossRef]

Phys. Rev. (1)

E. Burstein, “The anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).

Phys. Rev. B (1)

Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009).
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London Sect. B 67(10), 775–782 (1954).
[CrossRef]

Science (2)

H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999).
[CrossRef] [PubMed]

M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[CrossRef]

Surf. Interface Anal. (1)

X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008).
[CrossRef]

Thin Solid Films (2)

A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Evolution of the carrier concentration and mobility of PFTO films with respect to the content of PrF3 in the target. The blue and black dash line indicates the mobility and carrier concentration of FTO.

Fig. 2
Fig. 2

Surface topography of PFTO samples in 2 × 2 μm2 local area. The height of the PFTO and FTO films was aligned to 20 nm and 100 nm, respectively. The bottom right corner shows the height distribution for each sample. A 2-μm section of each film is shown to reveal its flatness.

Fig. 3
Fig. 3

(a) XRD patterns of the PFTO sample C and a glass substrate. (b) HTEM image of the PFTO film.

Fig. 4
Fig. 4

(a) Dependence of the WF of PFTO films on the content of PrF3 in the target. This relationship was fitted to a first-order curve (blue dotted line): y = 5.27662-0.04008*x, where x and y are the mole percent of PrF3 in the target and WF, respectively. (b) An energy band model for Ework function. WF was defined as the energy difference between the Fermi level of the film and vacuum level.

Fig. 5
Fig. 5

Transmittance of PFTO samples and FTO. The inset shows the absorption edge.

Tables (1)

Tables Icon

Table 1 The root-mean-square roughness (Rq) for different samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 μ = 1 μ i + 1 μ g + 1 μ l
αhυ=A (hυ E g ) 2

Metrics