Abstract

We experimentally demonstrate that introduction of a dielectric film can prevent the surface plasmon resonance (SPR) curve from being shifted to a smaller angle, called negative shift, which occurs unpredictably when metallic nanostructures deposited on a metal film are exposed to an adsorption of binding analytes. From parylene coating experiments, we find that the proposed reflection-type SPR system with a low refractive index MgF2 film and gold nanorods can provide an enhanced sensitivity by more than 6 times as well as a reliable positive shift. It is due to the fact that use of a dielectric film can contribute to the compensation of an anomalous dispersion relation and the prevention of a destructive interaction of propagating surface plasmons with multiple localized plasmon modes. Our approach is intended to show the feasibility and extend the applicability of the proposed SPR system to diverse biomolecular reactions.

© 2014 Optical Society of America

Full Article  |  PDF Article

Errata

Nak-Hyeon Kim, Tae Woo Kim, Kyung Min Byun, Jung Woo Leem, and Jae Su Yu, "How to avoid a negative shift in reflection-type surface plasmon resonance biosensors with metallic nanostructures: errata," Opt. Express 22, 7931-7931 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-7-7931

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  2. A. Shalabney, I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5(4), 571–606 (2011).
    [CrossRef]
  3. X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  4. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
    [CrossRef]
  5. L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
    [CrossRef] [PubMed]
  6. K. M. Byun, S. J. Kim, D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
    [CrossRef] [PubMed]
  7. K. M. Byun, S. J. Yoon, D. Kim, S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
    [CrossRef] [PubMed]
  8. N.-H. Kim, W. K. Jung, K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50(25), 4982–4988 (2011).
    [CrossRef]
  9. S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, S. J. Kim, “Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings,” Appl. Opt. 50(18), 2846–2854 (2011).
    [CrossRef] [PubMed]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  11. B. J. Jeon, M. H. Kim, J. C. Pyun, “Application of a functionalized parylene film as a linker layer of SPR biosensor,” Sens. Actuators B Chem. 154(2), 89–95 (2011).
    [CrossRef]
  12. T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
    [CrossRef] [PubMed]
  13. E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
    [CrossRef]
  14. R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
    [CrossRef]
  15. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23(9), 2307–2314 (2006).
    [CrossRef] [PubMed]
  16. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
    [CrossRef] [PubMed]
  17. R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
    [CrossRef]
  18. F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
    [CrossRef] [PubMed]
  19. A. Shalabney, I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
    [CrossRef] [PubMed]
  20. A. Lahav, M. Auslender, I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
    [CrossRef] [PubMed]
  21. H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
    [CrossRef]
  22. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
    [CrossRef] [PubMed]

2013

T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[CrossRef] [PubMed]

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21(18), 20863–20872 (2013).
[CrossRef] [PubMed]

2012

2011

2009

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

2008

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

A. Lahav, M. Auslender, I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
[CrossRef] [PubMed]

2007

K. M. Byun, S. J. Yoon, D. Kim, S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

2006

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23(9), 2307–2314 (2006).
[CrossRef] [PubMed]

2005

2003

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2000

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

1998

L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

1974

R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[CrossRef]

1973

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

Abdulhalim, I.

Aitchison, J. S.

Alexander, R. W.

R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[CrossRef]

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

Atkinson, A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Auslender, M.

Bahrami, F.

Bell, R. J.

R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Byun, K. M.

Choi, S. H.

Flesch, H.-G.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Fujii, T.

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

Hamamoto, K.

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

Haško, D.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Jakabovic, J.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Jakopic, G.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Jang, S. M.

Jeon, B. J.

B. J. Jeon, M. H. Kim, J. C. Pyun, “Application of a functionalized parylene film as a linker layer of SPR biosensor,” Sens. Actuators B Chem. 154(2), 89–95 (2011).
[CrossRef]

Jung, W. K.

Jung, Y. S.

Kaur, P.

Kawakami, Y.

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Kim, D.

Kim, H. K.

Kim, M. H.

B. J. Jeon, M. H. Kim, J. C. Pyun, “Application of a functionalized parylene film as a linker layer of SPR biosensor,” Sens. Actuators B Chem. 154(2), 89–95 (2011).
[CrossRef]

Kim, N.-H.

Kim, S. J.

Kirk, A. G.

X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kovác, J.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Kovener, G. S.

R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[CrossRef]

Lahav, A.

Lyon, L. A.

L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Maisonneuve, M.

Meunier, M.

Micheletto, R.

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

Mirkin, C. A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Mojahedi, M.

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Olkhov, R. V.

T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[CrossRef] [PubMed]

Pyun, J. C.

B. J. Jeon, M. H. Kim, J. C. Pyun, “Application of a functionalized parylene film as a linker layer of SPR biosensor,” Sens. Actuators B Chem. 154(2), 89–95 (2011).
[CrossRef]

Qin, L.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Read, T.

T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[CrossRef] [PubMed]

Resel, R.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Schatz, G. C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Shalabney, A.

A. Shalabney, I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
[CrossRef] [PubMed]

A. Shalabney, I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5(4), 571–606 (2011).
[CrossRef]

Shaw, A. M.

T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Waldeck, D. H.

Weis, M.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Werzer, O.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

Wondergem, H. J.

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Wuenschell, J.

Xue, C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Yoon, S. J.

Zou, S.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Chem.

L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

R. Micheletto, K. Hamamoto, T. Fujii, Y. Kawakami, “Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing,” Appl. Phys. Lett. 93(17), 174104 (2008).
[CrossRef]

Biosens. Bioelectron.

X. D. Hoa, A. G. Kirk, M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Laser Photon. Rev.

A. Shalabney, I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5(4), 571–606 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

T. Read, R. V. Olkhov, A. M. Shaw, “Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method,” Phys. Chem. Chem. Phys. 15(16), 6122–6127 (2013).
[CrossRef] [PubMed]

Phys. Rev. Lett.

E. T. Arakawa, M. W. Williams, R. N. Hamm, R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[CrossRef]

R. W. Alexander, G. S. Kovener, R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[CrossRef]

Phys. Status Solidi A

H.-G. Flesch, O. Werzer, M. Weis, J. Jakabovič, J. Kováč, D. Haško, G. Jakopič, H. J. Wondergem, R. Resel, “A combined X-ray, ellipsometry and atomic force microscopy study on thin parylene-C films,” Phys. Status Solidi A 206(8), 1727–1730 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103(36), 13300–13303 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

B. J. Jeon, M. H. Kim, J. C. Pyun, “Application of a functionalized parylene film as a linker layer of SPR biosensor,” Sens. Actuators B Chem. 154(2), 89–95 (2011).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed SPR system incorporating a dielectric film and gold nanorods. A 45-nm thick gold film is evaporated on a NSF10 glass substrate via adhesion of a 5-nm thick titanium layer. MgF2 film of a low refractive index is then applied as a dielectric layer. Finally, gold nanorods are randomly distributed on top of the fabricated substrate. TM-polarized light with λ = 633 nm is incident with an angle of θ.

Fig. 2
Fig. 2

Top and cross-sectional view SEM images of the deposited gold nanorods on MgF2/gold film. The width, length, and thickness of individual gold nanorods are 10, 30, and 10 nm, respectively.

Fig. 3
Fig. 3

SPR curves obtained from parylene coating experiments (a) for conventional bare gold substrate and (b) for SPR substrate with gold nanorods. The black and red lines represent the results before and after depositing a parylene film, respectively.

Fig. 4
Fig. 4

SPR curves obtained from parylene coating experiments for the proposed SPR substrate with 40-nm thick MgF2 film and gold nanorods.

Fig. 5
Fig. 5

Statistical data of the SPR angle shift of four different samples for parylene coating experiments. The average resonance shifts and the errors are determined to be 0.22° ± 0.006° for conventional SPR substrate, 0.38° ± 0.023° for MgF2-based one with an SEF = 1.7, –1.62° ± 0.058° for gold nanorod-based one with a negative SEF = –7.4. The SPR substrate with MgF2 film and gold nanorods exhibits a positive shift of 1.45° ± 0.062°, yielding a SEF = 6.6.

Fig. 6
Fig. 6

FDTD results of SPR substrates with (a) a bare gold film, (b) gold nanograting on gold film, and (c) gold nanograting on MgF2/gold film. Gold nanograting has a dimension of a width = 10 nm and a depth = 10 nm. Two-dimensional FDTD images are normalized by the field amplitude of 15.

Fig. 7
Fig. 7

Vertical EX field amplitude profiles at the point where maximum field is found for the four different substrates.

Metrics