Abstract

Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, 1988).
  3. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  4. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984).
    [CrossRef]
  7. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
    [CrossRef] [PubMed]
  8. S. Kawata, ed., Near Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  9. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  10. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
    [CrossRef] [PubMed]
  11. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000).
    [CrossRef]
  12. B. Reinhard, O. Paul, R. Beigang, M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
    [CrossRef] [PubMed]
  13. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
    [CrossRef] [PubMed]
  14. F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
    [CrossRef] [PubMed]
  15. R. Sainidou, F. J. Garcia de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express 16(7), 4499–4506 (2008).
    [CrossRef] [PubMed]
  16. I. P. Kaminow, W. L. Mammel, H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
    [CrossRef] [PubMed]
  17. A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
    [CrossRef]
  18. C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
    [CrossRef] [PubMed]
  19. C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
    [CrossRef]
  20. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  21. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [CrossRef] [PubMed]
  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  24. Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
    [CrossRef]
  25. Z. Sun, X. Zuo, “Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities,” Opt. Lett. 34(9), 1411–1413 (2009).
    [CrossRef] [PubMed]
  26. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  27. Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
    [CrossRef]
  28. D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
    [CrossRef] [PubMed]
  29. E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
    [CrossRef]
  30. M. Guillaumée, A. Y. Nikitin, M. J. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18(9), 9722–9727 (2010).
    [CrossRef] [PubMed]
  31. I. Schwarz, N. Livneh, R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20(1), 426–439 (2012).
    [CrossRef] [PubMed]
  32. K. C. Balram, D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express 20(20), 22735–22742 (2012).
    [CrossRef] [PubMed]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1976).
  34. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [CrossRef] [PubMed]
  35. A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
    [CrossRef]
  36. N. Noginova, Y. Barnakov, H. Li, M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
    [CrossRef] [PubMed]
  37. S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [CrossRef] [PubMed]
  38. S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
    [CrossRef] [PubMed]

2013 (1)

C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
[CrossRef] [PubMed]

2012 (5)

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

I. Schwarz, N. Livneh, R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20(1), 426–439 (2012).
[CrossRef] [PubMed]

K. C. Balram, D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express 20(20), 22735–22742 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

2008 (1)

2006 (2)

E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

2004 (2)

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (3)

Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

2000 (2)

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1987 (1)

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

1984 (1)

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984).
[CrossRef]

1983 (1)

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

1982 (1)

C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[CrossRef]

1976 (1)

A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[CrossRef]

1974 (1)

Ballantyne, J. M.

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Balram, K. C.

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Bao, K.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Barnakov, Y.

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beigang, R.

Brown, L. V.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Chen, Y. J.

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Ciracì, C.

C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Cook, R. E.

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Davies, M. C.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dunbar, L. A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Eckert, R.

Eguiluz, A.

A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[CrossRef]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Flanagan, M. T.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984).
[CrossRef]

Frazier, R. A.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Fu, Y. H.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Garcia de Abajo, F. J.

García de Abajo, F.

F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

M. Guillaumée, A. Y. Nikitin, M. J. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18(9), 9722–9727 (2010).
[CrossRef] [PubMed]

E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
[CrossRef]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Green, R. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Guillaumée, M.

Halas, N. J.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Heitmann, D.

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Jung, Y. S.

Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaminow, I. P.

Karaveli, S.

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kim, H. K.

Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Klein, M. J.

Koteles, E. S.

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Kroo, N.

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

Kuznetsov, A. I.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Lalanne, P.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lei, C.

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, H.

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Li, Y.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Liu, N.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Liu, W.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Livneh, N.

Luk’yanchuk, B.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Mammel, W. L.

Martín-Moreno, L.

M. Guillaumée, A. Y. Nikitin, M. J. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18(9), 9722–9727 (2010).
[CrossRef] [PubMed]

E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Miller, D. A. B.

Miroshnichenko, A. E.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
[CrossRef]

Mukherjee, S.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Neshev, D.

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Nikitin, A. Y.

Noginov, M. A.

Noginova, N.

Nordlander, P.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Pantell, R. H.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984).
[CrossRef]

Paul, O.

Pendry, J. B.

C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Peng, S.

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Quinn, J. J.

A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[CrossRef]

Rahm, M.

Rapaport, R.

Reinhard, B.

Ren, Y.

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Roberts, C. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000).
[CrossRef]

Sáenz, J.

F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

Sainidou, R.

Schaich, W. L.

C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[CrossRef]

Schulz, C.

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwartz, C.

C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[CrossRef]

Schwarz, I.

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Seymour, R. J.

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Shakesheff, K. M.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Smith, D. R.

C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Sonek, G. J.

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Spassov, V.

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Stanley, R. P.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sun, Y.

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Sun, Z.

Z. Sun, X. Zuo, “Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities,” Opt. Lett. 34(9), 1411–1413 (2009).
[CrossRef] [PubMed]

Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Szentirmay, Z.

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

Tendler, S. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Weber, H. P.

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zia, R.

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

Zuo, X.

ACS Nano (1)

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Biomaterials (1)

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000).
[CrossRef] [PubMed]

ChemPhysChem (1)

C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006).
[CrossRef]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Photonics News (1)

A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012).
[CrossRef]

Phys. Lett. A (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000).
[CrossRef]

Phys. Rev. B (2)

A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[CrossRef]

C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Science (5)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Solid State Commun. (1)

Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983).
[CrossRef]

Other (4)

S. Kawata, ed., Near Field Optics and Surface Plasmon Polaritons (Springer, 2001).

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, 1988).

S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a, b) Schematic boundary conditions for TM- and TE-polarization fields at a metal surface. (c) Tangential magnetic field (Hz) at a meta-surface of metal with surface polarization currents. (d, e) Illustrations of the fields and polarization charges or currents for SPs at a MA surface (d) and the artificial ASWs at a MDA surface (e). (f) Dispersion curve of the artificial ASWs at a MDA surface, in comparison with that of the SPs at a MA surface. (g, h) Quasi-evanescent distributions of the ASW fields (Hz and Ey) at a MDA surface

Fig. 2
Fig. 2

(a) Real-part normalized propagation constants of the ASWs at various MDA surfaces as functions of the wavelength. (b) Dependences of the transition wavelength (λtrans) and the wavelength characterizing confinement (W1/e) of the ASWs on the HID thickness. (c, d) Field distributions (Ey) of the propagating ASWs excited at MDA surfaces (nd = 4, td = 20 nm) with three equal-spaced grooves. The panel on right side of (c) shows corresponding Hz field in the boxed region in (c).

Fig. 3
Fig. 3

(a) Transverse field distribution of the ASW mode in a MDADM waveguide (nd = 4, td = 20 nm) with gap width s = 80 nm at λ0 = 500 nm. (b) Normalized propagation constant as a function of wavelength for s = 80 nm. (c) Dependence of the normalized propagation constant on the gap width at λ0 = 500 nm. (d) Field distribution of the wave propagating through a round bend, in which s = 100 nm, λ0 = 500 nm, and the bend radius is 500 nm.

Fig. 4
Fig. 4

(a) Schematic illustration of a HID-modified metal (Ag) slit array. (b) Transmission spectra of the metal slit array (nd = 4, td = 20 nm, s = 60 nm, p = 400 nm, h = 200 nm), compared with that without all the HID layers, and those with remaining HID layers only at the top and bottom metal surfaces (curve 1) or on sidewalls of the slits (curve 2). The inset is a magnification for display of curves 1 and 2. (c) Spectrum of field intensity in the resonant slit cavity. (d-h) Distributions of the steady state field magnitude (|Ey|) within a period of the structure at resonance wavelengths indicated with arrows in (b). Note the light is normally incident from the bottom side.

Fig. 5
Fig. 5

(a) Spectra of the relative integrated electric and magnetic field energy densities in a HID-modified metal cylinder (Ag core diameter D = 100 nm, nd = 4, td = 20 nm) upon normal incidence of TE-polarized light. (b-d) Distributions of the steady state electric field magnitudes (|Ey|) and square of the magnetic field (|H|2) at the dipolar, quadrupole and sextupole resonance positions of λ0 = 562, 404 and 316 nm. Note that light is incident from the bottom side.

Fig. 6
Fig. 6

Spectra of the relative integrated magnetic (a) and electric energy densities (b) in a Ag metal cylinder (D = 100 nm) with or without modification of a HID layer (nd = 4, td = 20 nm). “MDA” and “MA” refer to respectively the structures with and without the HID layer. Comparison is made for both TE and TM polarized incidence light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α m =Δ H t = P ¯ y t t d
e 2 γ 2 t d = ( γ 2 γ 1 )( γ 2 γ 3 ) ( γ 2 + γ 1 )( γ 2 + γ 3 )
W 1/e = 1 γ 1 + 1 γ 3 + t d

Metrics