Abstract

We demonstrated 32-channel drop filters with 100 GHz spacing consisting of arrayed nanocavities and a waveguide in a photonic crystal silicon slab. Changing the lattice constant of the nanocavities on the subnanometer scale successfully controlled the drop wavelengths at 100 GHz spacing in the wavelength range between 1510 and 1550 nm. The device size was as small as 15 μm × 270 μm, and the variation in drop wavelengths was less than 0.3 nm in terms of standard deviation. We also present a movie showing the operation of the drop filter, demonstrating that the arrayed nanocavities have the potential for developing ultracompact 100 GHz spaced filters in a dense wavelength division multiplexing system.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  3. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
    [CrossRef] [PubMed]
  4. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [CrossRef] [PubMed]
  5. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
    [CrossRef]
  6. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
    [CrossRef]
  7. L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010).
    [CrossRef] [PubMed]
  8. T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  9. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [CrossRef] [PubMed]
  10. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [CrossRef] [PubMed]
  11. M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011).
    [CrossRef] [PubMed]
  12. H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
    [CrossRef]
  13. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
    [CrossRef]
  14. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  15. A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
    [CrossRef]
  16. B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [CrossRef] [PubMed]
  17. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
    [CrossRef]
  18. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
    [CrossRef] [PubMed]
  19. H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
    [CrossRef] [PubMed]
  20. A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
    [CrossRef] [PubMed]
  21. B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
    [CrossRef]
  22. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [CrossRef] [PubMed]
  23. Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express 18(13), 13510–13515 (2010).
    [CrossRef] [PubMed]
  24. S. Park, K. J. Kim, I. G. Kim, G. Kim, “Si micro-ring MUX/DeMUX WDM filters,” Opt. Express 19(14), 13531–13539 (2011).
    [CrossRef] [PubMed]
  25. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
    [CrossRef] [PubMed]
  26. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids vol. 1 E. D. Palik, ed. (Academic Press, 1985).
  27. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012).
    [CrossRef] [PubMed]
  28. T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [CrossRef] [PubMed]
  29. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [CrossRef]
  30. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  31. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
    [CrossRef] [PubMed]
  32. A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
    [CrossRef] [PubMed]
  33. S. W. Jeon, J. K. Han, B. S. Song, S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
    [CrossRef] [PubMed]

2014 (1)

2013 (2)

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (5)

2010 (5)

2009 (2)

T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

2008 (1)

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

2006 (3)

2005 (3)

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

2003 (3)

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

2001 (1)

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Ang, K. W.

Asano, T.

H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[CrossRef] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Baba, T.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011).
[CrossRef] [PubMed]

Boucaud, P.

Checoury, X.

Chen, C. J.

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Combrié, S.

De Rossi, A.

Debnath, K.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[CrossRef]

Fang, Q.

Gardes, F. Y.

Gu, T.

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Hama, Y.

Han, J. K.

Han, Z.

Haret, L. D.

Hashimoto, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Ishikawa, Y.

Ishikura, N.

Jeon, S. W.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kim, G.

Kim, I. G.

Kim, K. J.

Kimura, H.

Kou, R.

Krauss, T. F.

Kuramochi, E.

A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Kwong, D. L.

Liow, T. Y.

Lo, G. Q.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

McMillan, J. F.

Mitsugi, S.

Mochizuki, M.

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

Nagashima, T.

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

Nishi, H.

Nishiguchi, K.

Noda, S.

H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[CrossRef] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

S. W. Jeon, J. K. Han, B. S. Song, S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
[CrossRef] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

O’Faolain, L.

Otsuka, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

Park, S.

Phang, Y. T.

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Reed, G. T.

Sato, Y.

Sekoguchi, H.

Shinkawa, M.

Shinojima, H.

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Song, B. S.

S. W. Jeon, J. K. Han, B. S. Song, S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Song, J. F.

Steffan, A. G.

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Suzuki, K.

Taguchi, Y.

Takahashi, Y.

Takana, Y.

Takano, H.

Tan, C. W.

Tanabe, T.

A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
[CrossRef] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Taniyama, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Tsuchizawa, T.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[CrossRef]

Wada, K.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Wong, C. W.

Yamada, K.

Yamada, T.

Yazawa, N.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

Yokoo, A.

A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
[CrossRef] [PubMed]

Yu, M.

Yu, M. B.

Zheng, J.

Appl. Phys. Lett. (3)

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

Nano Lett. (1)

A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (3)

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

Opt. Express (17)

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express 18(13), 13510–13515 (2010).
[CrossRef] [PubMed]

S. W. Jeon, J. K. Han, B. S. Song, S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010).
[CrossRef] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[CrossRef] [PubMed]

S. Park, K. J. Kim, I. G. Kim, G. Kim, “Si micro-ring MUX/DeMUX WDM filters,” Opt. Express 19(14), 13531–13539 (2011).
[CrossRef] [PubMed]

M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011).
[CrossRef] [PubMed]

H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[CrossRef] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[CrossRef] [PubMed]

Phys. Rev. B (2)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[CrossRef]

Science (1)

B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Other (1)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids vol. 1 E. D. Palik, ed. (Academic Press, 1985).

Supplementary Material (2)

» Media 1: AVI (1096 KB)     
» Media 2: AVI (2225 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics