Abstract

We demonstrated a time-of-flight (TOF) ranging system employing laser pulses at 1550 nm with multiple repetition rates to decrease the range ambiguity, which was usually found in high-repetition TOF systems. The time-correlated single-photon counting technique with an InGaAs/InP avalanche photodiode based single-photon detector, was applied to record different arrival time of the scattered return photons from the non-cooperative target at different repetition rates to determine the measured distance, providing an effective and convenient method to increase the absolute range capacity of the whole system. We attained hundreds of meters range with millimeter accuracy by using laser pulses of approximately 10-MHz repetition rates.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985).
    [CrossRef]
  2. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
    [CrossRef]
  3. F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [CrossRef]
  4. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
    [CrossRef] [PubMed]
  5. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
    [CrossRef] [PubMed]
  6. G. Buller, A. Wallace, “Recent advances in ranging and three-dimensional imaging using time-correlated single-photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
    [CrossRef]
  7. K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
    [CrossRef]
  8. G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
    [CrossRef]
  9. M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).
  10. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [CrossRef]
  11. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [CrossRef] [PubMed]
  12. Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
    [CrossRef]
  13. X. Chen, E. Wu, G. Wu, H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
    [CrossRef] [PubMed]
  14. N. Namekata, S. Adachi, S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
    [CrossRef] [PubMed]
  15. J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
    [CrossRef]
  16. Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
    [CrossRef]
  17. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
    [CrossRef] [PubMed]
  18. P. A. Hiskett, C. S. Parry, A. McCarthy, G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  19. N. J. Krichel, A. McCarthy, G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [CrossRef] [PubMed]
  20. S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [CrossRef]
  21. I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]

2013 (1)

2011 (2)

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
[CrossRef] [PubMed]

2010 (4)

N. J. Krichel, A. McCarthy, G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[CrossRef] [PubMed]

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

X. Chen, E. Wu, G. Wu, H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

2009 (4)

N. Namekata, S. Adachi, S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
[CrossRef] [PubMed]

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

2008 (1)

2007 (2)

2005 (1)

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

2002 (3)

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[CrossRef] [PubMed]

2000 (2)

F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

1985 (1)

J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Adachi, S.

Albota, M.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Albota, M. A.

Aull, B.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Aull, B. F.

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Brown, G.

F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Buller, G.

G. Buller, A. Wallace, “Recent advances in ranging and three-dimensional imaging using time-correlated single-photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[CrossRef]

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Buller, G. S.

Carlson, R. R.

Carter, W. E.

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

Chen, F.

F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Chen, X.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

X. Chen, E. Wu, G. Wu, H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

Coddington, I.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Cossio, T. K.

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

Cova, S.

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Degnan, J.

J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Dixon, A.

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Dorenbos, S. N.

Dynes, J.

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Fouche, D.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Fouche, D. G.

Gemmell, N. R.

Gu, X.

Hadfield, R.

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

Hadfield, R. H.

Harkins, R.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Heinrichs, R.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Heinrichs, R. M.

Hernandez-Marin, S.

Hiskett, P.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Hiskett, P. A.

Inoue, S.

Jian, Y.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

Kocher, D.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Kocher, D. G.

Kong, W.

Krichel, N. J.

Lamb, R.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Liang, Y.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
[CrossRef] [PubMed]

MacKinnon, G.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Marino, R.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

McCarthy, A.

Mooney, J.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
[CrossRef] [PubMed]

Nam, S. W.

Namekata, N.

Nenadovic, L.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

O’Brien, M.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

O’Brien, M. E.

Parry, C. S.

Pellegrini, S.

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Player, B.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Player, B. E.

Rarity, J.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Ren, M.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
[CrossRef] [PubMed]

Ren, X.

Ridley, K.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Sharpe, A.

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Shields, A.

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Shrestha, K. Y.

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

Slatton, K. C.

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

Smith, G.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Smith, J.

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Song, M.

F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Sung, R.

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Swann, W.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Tanner, M. G.

Thew, R.

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Wallace, A.

G. Buller, A. Wallace, “Recent advances in ranging and three-dimensional imaging using time-correlated single-photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[CrossRef]

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Wallace, A. M.

Warburton, R. E.

Willard, B.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Willard, B. C.

Wu, E.

Wu, G.

Yuan, Z.

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Zayhowski, J.

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Zayhowski, J. J.

Zbinden, H.

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Zeng, H.

Zhang, J.

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Zwiller, V.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (1)

K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Buller, A. Wallace, “Recent advances in ranging and three-dimensional imaging using time-correlated single-photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985).
[CrossRef]

J. Geodyn. (1)

J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002).
[CrossRef]

Lincoln Lab. J. (1)

M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Meas. Sci. Technol. (1)

S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Nat. Photonics (2)

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

Opt. Eng. (1)

F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the TCSPC based TOF laser ranging system at 1550 nm. Col: collimator; BE: beam expander; M1, M2: high-reflection mirrors; OBPF: optical bandpass filter (center wavelength: 1549.60 nm, FWHM: 7.47 nm); MMF: multimode fiber; SPD: single-photon detector based on InGaAs/InP APD; TCSPC: time-correlated single-photon counting system (PicoHarp300, PicoQuant GmbH, Germany).

Fig. 2
Fig. 2

(a) Schematic of the InGaAs/InP single-photon detector. AMP1, 2: amplifier; BPF: band-pass filter; LPF: low-pass filter. (b) Timing jitter of the single-photon detector in the free-running mode.

Fig. 3
Fig. 3

Integrated number of photon events as a function of different measured distances. Inset: Histogram of the photons scattered from the target surface 460 m away.

Fig. 4
Fig. 4

(a) Time resolution versus the integrated number of return photons. The simulation data were plotted by increasing the optical attenuation in the laser propagating channel while keeping the target 7.5 meters away. (b) Depth resolution versus the integrated time when the distance was 380 m.

Fig. 5
Fig. 5

Depth resolution as a function of distance with the same total photon-counts.

Fig. 6
Fig. 6

Depth resolution as a function of SNR. Inset: SNR as a function of distance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d Rep = c 2n f Rep ,
s= n 1 d Rep1 + c t 1 2n ,
s= n n d Repn + c t n 2n ,
d Rep = c 2n F Rep = c 2n [ 1 f Rep1 1 f Rep2 1 f Repn ],
n ¯ in = E out hv D 2 8 L 2 μ T Opt T Trans ,

Metrics